cgal/Partition_2/include/CGAL/Partition_2/Rotation_tree_2.h

191 lines
5.4 KiB
C++

// Copyright (c) 2000 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Susan Hert <hert@mpi-sb.mpg.de>
/*
A rotation tree for computing the vertex visibility graph of a set of
non-intersecting segments in the plane (e.g. edges of a polygon).
Let $V$ be the set of segment endpoints and
let $p_{\infinity}$ ($p_{-\infinity}$) be a point with $y$ coordinate
$\infinity$ ($-\infinity$) and $x$ coordinate larger than all points
in $V$. The tree $G$ is a tree with node set
$V \cup \{p_{\infinity}, p_{-\infinity}\}$. Every node (except the one
corresponding to $p_{\infinity}$) has exactly one outgoing edge to the
point $q$ with the following property: $q$ is the first point encountered
when looking from $p$ in direction $d$ and rotating counterclockwise.
*/
#ifndef CGAL_ROTATION_TREE_H
#define CGAL_ROTATION_TREE_H
#include <CGAL/disable_warnings.h>
#include <CGAL/license/Partition_2.h>
#include <CGAL/vector.h>
#include <CGAL/Partition_2/Rotation_tree_node_2.h>
namespace CGAL {
template <class Traits_>
class Rotation_tree_2 : public internal::vector< Rotation_tree_node_2<Traits_> >
{
public:
typedef Traits_ Traits;
typedef Rotation_tree_node_2<Traits> Node;
typedef typename internal::vector<Node>::iterator Self_iterator;
typedef typename Traits::Point_2 Point_2;
using internal::vector< Rotation_tree_node_2<Traits_> >::push_back;
using internal::vector< Rotation_tree_node_2<Traits_> >::back;
class Greater {
typename Traits::Less_xy_2 less;
typedef typename Traits::Point_2 Point;
public:
Greater(typename Traits::Less_xy_2 less) : less(less) {}
template <typename Point_like>
bool operator()(const Point_like& p1, const Point_like& p2) {
return less(Point(p2), Point(p1));
}
};
struct Equal {
bool operator()(const Point_2& p, const Point_2& q) const
{
return p == q;
}
};
// constructor
template<class ForwardIterator>
Rotation_tree_2(ForwardIterator first, ForwardIterator beyond, const Traits& traits)
{
for (ForwardIterator it = first; it != beyond; it++)
push_back(*it);
Greater greater (traits.less_xy_2_object());
Equal equal;
std::sort(this->begin(), this->end(), greater);
this->erase(std::unique(this->begin(), this->end(),equal), this->end());
// front() is the point with the largest x coordinate
// Add two auxiliary points that have a special role and whose coordinates are not used
// push the point p_minus_infinity; the coordinates should never be used
push_back(back());
// push the point p_infinity; the coordinates should never be used
push_back(back());
_p_inf = this->end(); // record the iterators to these extreme points
_p_inf--;
_p_minus_inf = _p_inf;
_p_minus_inf--;
Self_iterator child;
// make p_minus_inf a child of p_inf
set_rightmost_child(_p_minus_inf, _p_inf);
child = this->begin(); // now points to p_0
while (child != _p_minus_inf) // make all points children of p_minus_inf
{
set_rightmost_child(child, _p_minus_inf);
child++;
}
}
// the point that comes first in the right-to-left ordering is first
// in the ordering, after the auxilliary points p_minus_inf and p_inf
Self_iterator rightmost_point_ref()
{
return this->begin();
}
Self_iterator right_sibling(Self_iterator p)
{
if (!(*p).has_right_sibling()) return this->end();
return (*p).right_sibling();
}
Self_iterator left_sibling(Self_iterator p)
{
if (!(*p).has_left_sibling()) return this->end();
return (*p).left_sibling();
}
Self_iterator rightmost_child(Self_iterator p)
{
if (!(*p).has_children()) return this->end();
return (*p).rightmost_child();
}
Self_iterator parent(Self_iterator p)
{
if (!(*p).has_parent()) return this->end();
return (*p).parent();
}
bool parent_is_p_infinity(Self_iterator p)
{
return parent(p) == _p_inf;
}
bool parent_is_p_minus_infinity(Self_iterator p)
{
return parent(p) == _p_minus_inf;
}
// makes *p the parent of *q
void set_parent (Self_iterator p, Self_iterator q)
{
CGAL_assertion(q != this->end());
if (p == this->end())
(*q).clear_parent();
else
(*q).set_parent(p);
}
// makes *p the rightmost child of *q
void set_rightmost_child(Self_iterator p, Self_iterator q);
// makes *p the left sibling of *q
void set_left_sibling(Self_iterator p, Self_iterator q);
// makes *p the right sibling of *q
void set_right_sibling(Self_iterator p, Self_iterator q);
// NOTE: this function does not actually remove the node p from the
// list; it only reorganizes the pointers so this node is not
// in the tree structure anymore
void erase(Self_iterator p);
private:
Self_iterator _p_inf;
Self_iterator _p_minus_inf;
};
}
#include <CGAL/Partition_2/Rotation_tree_2_impl.h>
#include <CGAL/enable_warnings.h>
#endif // CGAL_ROTATION_TREE_H
// For the Emacs editor:
// Local Variables:
// c-basic-offset: 3
// End: