cgal/Polygon/include/CGAL/Polygon_2/Polygon_2_simplicity.h

507 lines
18 KiB
C++

// Copyright (c) 2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Geert-Jan Giezeman <geert@cs.uu.nl>
#ifndef CGAL_POLYGON_2_SIMPLICITY_H
#define CGAL_POLYGON_2_SIMPLICITY_H
#include <CGAL/disable_warnings.h>
#include <CGAL/enum.h>
#include <CGAL/Polygon_2/polygon_assertions.h>
#include <set>
#include <vector>
#include <algorithm>
/*
A polygon is called simple of no edges intersect each other, except
consecutive edges, which intersect in their common vertex.
The test for simplicity is implemented by means of a sweep line algorithm.
The vertical line is swept from left to right. The edges of the polygon that
are crossed by the sweep line are stored in a tree from bottom to top.
We discern three types of events:
- insertion events. When both edges of a polygon vertex extend to the right
we need to insert both edges in the tree. We need to search with the vertex
to find out between which edges the new edges are to be inserted.
- deletion events. When both edges extend to the left of the vertex we need
to remove both edges from the tree. We have to check that the vertex lies
between the edges above and below the removed edges.
- replacement event. In the other case we need to replace the edge that
extends to the left by the edge that extends to the right. We need to check
that the vertex lies between the edges above and below the current edge.
We represent the tree by a std::set. This is not a perfect fit for the
operations described above. In particular, the fact that we search with a
VERTEX, while the set contains EDGES, is not directly supported. The
insertion of edges is also complicated by the fact that we need to insert
two edges starting at the same vertex. The order in which they are inserted
in the tree does matter, because the edges go in separate directions.
Because of this the set needs a special associated comparison function.
Every edge has a flag 'is_in_tree', which is true for the edges in the tree
but false for the edges when they are inserted. The comparison function
treats the latter type of edge as a vertex. Another flag, is_left_to_right,
tells which of the two vertices to take. The problem of the coinciding
vertices is solved by the convention that the highest edges is always
inserted first. The comparison function uses this fact.
Vertex indices of the polygon play a double role. The number v can be used to
identify vertex v or the edge from vertex v to vertex v+1.
*/
namespace CGAL {
namespace i_polygon {
// namespace CGAL::i_polygon is used for internal functions
typedef std::vector<int>::size_type Index_t;
struct Vertex_index {
Vertex_index() {}
explicit Vertex_index(Index_t i): m_i(i) {}
Index_t as_int() const {return m_i;}
Vertex_index operator++() {++m_i; return *this; }
bool operator==(const Vertex_index& other) const { return (m_i == other.m_i); }
private:
Index_t m_i;
};
struct Vertex_order {
explicit Vertex_order(Index_t i): m_i(i) {}
Index_t as_int() {return m_i;}
private:
Index_t m_i;
};
template <class ForwardIterator, class PolygonTraits>
class Vertex_data ;
template <class VertexData>
class Less_segments {
typedef VertexData Vertex_data;
Vertex_data *m_vertex_data;
bool less_than_in_tree(Vertex_index i, Vertex_index j) const;
public:
Less_segments(Vertex_data *vertex_data) : m_vertex_data(vertex_data) {}
bool operator()(Vertex_index i, Vertex_index j) const;
};
// The data in Edge_data is attached to an edge when it is (about to be)
// inserted in the tree.
// Although conceptually this data belongs in the tree, it is stored with
// the vertices in the Vertex_data structure.
template <class LessSegments>
struct Edge_data {
typedef std::set<Vertex_index, LessSegments> Tree;
Edge_data() : is_in_tree(false) {}
Edge_data(typename Tree::iterator it) : tree_it(it), is_in_tree(false) {}
typename Tree::iterator tree_it; // The iterator of the edge in the tree.
// Needed for cross reference. If edge j
// is in the tree: *edges[j].tree_it == j
bool is_in_tree :1; // Must be set -after- inserting the edge
// in the tree. Plays a role in the
// comparison function of the tree.
bool is_left_to_right :1; // Direction of edge from vertex v to v+1
};
template <class ForwardIterator, class PolygonTraits>
class Vertex_data_base {
public:
typedef typename PolygonTraits::Point_2 Point_2;
// ForwardIterator points_start;
std::vector<ForwardIterator> iterators;
std::vector<Vertex_order> m_order_of;
std::vector<Vertex_index> m_idx_at_rank;
std::vector<Vertex_index>::size_type m_size;
typename PolygonTraits::Orientation_2 orientation_2;
typename PolygonTraits::Less_xy_2 less_xy_2;
bool is_simple_result;
Vertex_data_base(ForwardIterator begin, ForwardIterator end,
const PolygonTraits& pgnt);
bool ordered_left_to_right(Vertex_index v1, Vertex_index v2)
{ return m_order_of[v1.as_int()].as_int() <
m_order_of[v2.as_int()].as_int();}
Vertex_index index_at_rank(Vertex_order vo) const
{ return m_idx_at_rank[vo.as_int()];}
Vertex_index next(Vertex_index k) const
{ ++k; return k.as_int() == m_size ? Vertex_index(0) : k;}
Vertex_index prev(Vertex_index k) const
{ return k.as_int() == 0
? Vertex_index(m_size-1)
: Vertex_index(k.as_int()-1);
}
Point_2 point(Vertex_index i)
{ return *iterators[i.as_int()];}
// { return points_start[i.as_int()];}
};
template <class ForwardIterator, class PolygonTraits>
class Vertex_data : public Vertex_data_base<ForwardIterator, PolygonTraits> {
public:
typedef Less_segments<Vertex_data> Less_segs;
typedef std::set<Vertex_index, Less_segs> Tree;
typedef Vertex_data_base<ForwardIterator, PolygonTraits> Base_class;
using Base_class::ordered_left_to_right;
using Base_class::next;
using Base_class::prev;
using Base_class::index_at_rank;
using Base_class::point;
std::vector<Edge_data<Less_segs> > edges;
Vertex_data(ForwardIterator begin, ForwardIterator end,
const PolygonTraits& pgnt);
void init(Tree *tree);
void left_and_right_index(Vertex_index &left, Vertex_index &right,
Vertex_index edge);
Vertex_index left_index(Vertex_index edge)
{ return edges[edge.as_int()].is_left_to_right ? edge : next(edge); }
void sweep(Tree *tree);
bool insertion_event(Tree *tree,
Vertex_index i, Vertex_index j, Vertex_index k);
bool replacement_event(Tree *tree,
Vertex_index cur, Vertex_index to_insert);
bool deletion_event(Tree *tree, Vertex_index i, Vertex_index j);
bool on_right_side(Vertex_index vt, Vertex_index edge, bool above);
};
template <class VertexData>
class Less_vertex_data {
VertexData *m_vertex_data;
public:
Less_vertex_data(VertexData *vd)
: m_vertex_data(vd) {}
bool operator()(Vertex_index i, Vertex_index j) const;
};
} // end of namespace i_polygon
// ----- implementation of i_polygon functions. -----
namespace i_polygon {
template <class VertexData>
bool Less_segments<VertexData>::
operator()(Vertex_index i, Vertex_index j) const
{
if (i.as_int() == j.as_int()) {
// Some STL implementations may call comparator(x, x)
// to verify irreflexivity. Don't violate less_than_in_tree's
// preconditions in such an environment.
return false;
} else if (m_vertex_data->edges[j.as_int()].is_in_tree) {
return less_than_in_tree(i,j);
} else {
return !less_than_in_tree(j,i);
}
}
template <class VertexData>
bool Less_segments<VertexData>::
less_than_in_tree(Vertex_index new_edge, Vertex_index tree_edge) const
{
CGAL_polygon_precondition(
m_vertex_data->edges[tree_edge.as_int()].is_in_tree);
CGAL_polygon_precondition(
!m_vertex_data->edges[new_edge.as_int()].is_in_tree);
Vertex_index left, mid, right;
m_vertex_data->left_and_right_index(left, right, tree_edge);
mid = m_vertex_data->left_index(new_edge);
if (mid.as_int() == left.as_int()) {
return true;
}
switch (m_vertex_data->orientation_2( m_vertex_data->point(left),
m_vertex_data->point(mid), m_vertex_data->point(right))) {
case LEFT_TURN: return true;
case RIGHT_TURN: return false;
case COLLINEAR: break;
}
m_vertex_data->is_simple_result = false;
return true;
}
template <class VertexData>
bool Less_vertex_data<VertexData>::
operator()(Vertex_index i, Vertex_index j) const
{
return m_vertex_data->less_xy_2(
m_vertex_data->point(i), m_vertex_data->point(j));
}
template <class ForwardIterator, class PolygonTraits>
Vertex_data_base<ForwardIterator, PolygonTraits>::
Vertex_data_base(ForwardIterator begin, ForwardIterator end,
const PolygonTraits& pgn_traits)
: orientation_2(pgn_traits.orientation_2_object()),
less_xy_2(pgn_traits.less_xy_2_object())
{
m_size = std::distance(begin, end);
is_simple_result = true;
m_idx_at_rank.reserve(m_size);
iterators.reserve(m_size);
m_order_of.insert(m_order_of.end(), m_size, Vertex_order(0));
for (Index_t i = 0; i< m_size; ++i, ++begin) {
m_idx_at_rank.push_back(Vertex_index(i));
iterators.push_back(begin);
}
std::sort(m_idx_at_rank.begin(), m_idx_at_rank.end(),
Less_vertex_data<Vertex_data_base>(this));
for (Index_t j = 0; j < m_size; ++j) {
Vertex_order vo(j);
m_order_of[index_at_rank(vo).as_int()] = vo;
}
}
template <class ForwardIterator, class PolygonTraits>
void Vertex_data<ForwardIterator, PolygonTraits>::
left_and_right_index(Vertex_index &left, Vertex_index &right,
Vertex_index edge)
{
if (edges[edge.as_int()].is_left_to_right) {
left = edge; right = next(edge);
} else {
right = edge; left = next(edge);
}
}
template <class ForwardIterator, class PolygonTraits>
Vertex_data<ForwardIterator, PolygonTraits>::
Vertex_data(ForwardIterator begin, ForwardIterator end,
const PolygonTraits& pgn_traits)
: Base_class(begin, end, pgn_traits) {}
template <class ForwardIterator, class PolygonTraits>
void Vertex_data<ForwardIterator, PolygonTraits>::init(Tree *tree)
{
// The initialization cannot be done in the constructor,
// otherwise we copy singular valued iterators.
edges.insert(edges.end(), this->m_size, Edge_data<Less_segs>(tree->end()));
}
template <class ForwardIterator, class PolygonTraits>
bool Vertex_data<ForwardIterator, PolygonTraits>::
insertion_event(Tree *tree, Vertex_index prev_vt,
Vertex_index mid_vt, Vertex_index next_vt)
{
// check which endpoint is above the other
bool left_turn;
switch(this->orientation_2(point(prev_vt), point(mid_vt), point(next_vt))) {
case LEFT_TURN: left_turn = true; break;
case RIGHT_TURN: left_turn = false; break;
default: return false;
}
Edge_data<Less_segs>
&td_prev = edges[prev_vt.as_int()],
&td_mid = edges[mid_vt.as_int()];
td_prev.is_in_tree = false;
td_prev.is_left_to_right = false;
td_mid.is_in_tree = false;
td_mid.is_left_to_right = true;
// insert the highest chain first
std::pair<typename Tree::iterator, bool> result;
if (left_turn) {
result = tree->insert(prev_vt);
// CGAL_polygon_assertion(result.second)
td_prev.tree_it = result.first;
td_prev.is_in_tree = true;
result = tree->insert(mid_vt);
// CGAL_polygon_assertion(result.second)
td_mid.tree_it = result.first;
td_mid.is_in_tree = true;
} else {
result = tree->insert(mid_vt);
// CGAL_polygon_assertion(result.second)
td_mid.tree_it = result.first;
td_mid.is_in_tree = true;
result = tree->insert(prev_vt);
// CGAL_polygon_assertion(result.second)
td_prev.tree_it = result.first;
td_prev.is_in_tree = true;
}
return true;
}
template <class ForwardIterator, class PolygonTraits>
bool Vertex_data<ForwardIterator, PolygonTraits>::
on_right_side(Vertex_index vt, Vertex_index edge_id, bool above)
{
Orientation turn =
this->orientation_2(point(edge_id), point(vt), point(next(edge_id)));
bool left_turn = edges[edge_id.as_int()].is_left_to_right ? above : !above;
if (left_turn) {
if (turn != RIGHT_TURN) {
return false;
}
} else {
if (turn != LEFT_TURN) {
return false;
}
}
return true;
}
template <class ForwardIterator, class PolygonTraits>
bool Vertex_data<ForwardIterator, PolygonTraits>::
replacement_event(Tree *tree, Vertex_index cur_edge, Vertex_index next_edge)
{
// check if continuation point is on the right side of neighbor segments
typedef typename Tree::iterator It;
Edge_data<Less_segs> &td = edges[cur_edge.as_int()];
CGAL_polygon_assertion(td.is_in_tree);
It cur_seg = td.tree_it;
Vertex_index cur_vt = (td.is_left_to_right) ? next_edge : cur_edge;
if (cur_seg != tree->begin()) {
It seg_below = cur_seg;
--seg_below;
if (!on_right_side(cur_vt, *seg_below, true)) {
return false;
}
}
It seg_above = cur_seg;
++ seg_above;
if (seg_above != tree->end()) {
if (!on_right_side(cur_vt, *seg_above, false)) {
return false;
}
}
// replace the segment
Edge_data<Less_segs> &new_td =
edges[next_edge.as_int()];
new_td.is_left_to_right = td.is_left_to_right;
new_td.is_in_tree = false;
tree->erase(cur_seg);
td.is_in_tree = false;
new_td.tree_it = tree->insert(seg_above, next_edge);
new_td.is_in_tree = true;
return true;
}
template <class ForwardIterator, class PolygonTraits>
bool Vertex_data<ForwardIterator, PolygonTraits>::
deletion_event(Tree *tree, Vertex_index prev_vt, Vertex_index mid_vt)
{
// check if continuation point is on the right side of neighbor segments
typedef typename Tree::iterator It;
Edge_data<Less_segs>
&td_prev = edges[prev_vt.as_int()],
&td_mid = edges[mid_vt.as_int()];
It prev_seg = td_prev.tree_it, mid_seg = td_mid.tree_it;
Vertex_index cur_vt = (td_prev.is_left_to_right) ? mid_vt : prev_vt;
It seg_above = prev_seg;
++seg_above;
if (seg_above == mid_seg) {
++seg_above;
} else {
// mid_seg was not above prev_seg, so prev_seg should be above mid_seg
// We check this to see if the edges are really neighbors in the tree.
It prev_seg_copy = mid_seg;
++prev_seg_copy;
if (prev_seg_copy != prev_seg)
return false;
}
// remove the segments
tree->erase(prev_seg);
td_prev.is_in_tree = false;
tree->erase(mid_seg);
td_mid.is_in_tree = false;
// Check if the vertex that is removed lies between the two tree edges.
if (seg_above != tree->end()) {
if (!on_right_side(cur_vt, *seg_above, false))
return false;
}
if (seg_above != tree->begin()) {
--seg_above; // which turns it in seg_below
if (!on_right_side(cur_vt, *seg_above, true))
return false;
}
return true;
}
template <class ForwardIterator, class PolygonTraits>
void Vertex_data<ForwardIterator, PolygonTraits>::
sweep(Tree *tree)
{
if (this->m_size < 3)
return;
bool succes = true;
for (Index_t i=0; i< this->m_size; ++i) {
Vertex_index cur = index_at_rank(Vertex_order(i));
Vertex_index prev_vt = prev(cur), next_vt = next(cur);
if (ordered_left_to_right(cur, next_vt)) {
if (ordered_left_to_right(cur, prev_vt))
succes = insertion_event(tree, prev_vt, cur, next_vt);
else
succes = replacement_event(tree, prev_vt, cur);
} else {
if (ordered_left_to_right(cur, prev_vt))
succes = replacement_event(tree, cur, prev_vt);
else
succes = deletion_event(tree, prev_vt, cur);
}
if (!succes)
break;
}
if (!succes)
this->is_simple_result = false;
}
}
// ----- End of implementation of i_polygon functions. -----
template <class Iterator, class PolygonTraits>
bool is_simple_polygon(Iterator points_begin, Iterator points_end,
const PolygonTraits& polygon_traits)
{
typedef Iterator ForwardIterator;
typedef i_polygon::Vertex_data<ForwardIterator, PolygonTraits> Vertex_data;
typedef std::set<i_polygon::Vertex_index,
i_polygon::Less_segments<Vertex_data> > Tree;
// A temporary fix as the sweep in some cases doesn't discover vertices with degree > 2
// Todo: fix the sweep code
std::vector<typename PolygonTraits::Point_2> points(points_begin,points_end);
std::sort(points.begin(), points.end(), polygon_traits.less_xy_2_object());
typename std::vector<typename PolygonTraits::Point_2>::iterator
succ(points.begin()) , it(succ++);
for(;succ != points.end(); ++it,++succ){
if(*it == *succ){
return false;
}
}
// end of fix
Vertex_data vertex_data(points_begin, points_end, polygon_traits);
Tree tree(&vertex_data);
vertex_data.init(&tree);
vertex_data.sweep(&tree);
return vertex_data.is_simple_result;
}
} // end of namespace CGAL
#include <CGAL/enable_warnings.h>
#endif