cgal/Orthtree/include/CGAL/Orthtree_traits_point.h

228 lines
7.8 KiB
C++

// Copyright (c) 2023 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Jackson Campolattaro
#ifndef ORTHTREE_TESTS_ORTHTREE_TRAITS_POINT_H
#define ORTHTREE_TESTS_ORTHTREE_TRAITS_POINT_H
#include <CGAL/license/Orthtree.h>
#include <CGAL/Dimension.h>
#include <CGAL/Orthtree/Cartesian_ranges.h>
#include <CGAL/Orthtree_traits_base.h>
namespace CGAL {
template <typename Tree, typename PointMap>
void reassign_points(
Tree& tree, PointMap& point_map,
typename Tree::Node_index n, const typename Tree::Point& center, typename Tree::Node_data points,
std::bitset<Tree::dimension> coord = {}, std::size_t dimension = 0
) {
// Root case: reached the last dimension
if (dimension == Tree::dimension) {
tree.data(tree.child(n, coord.to_ulong())) = points;
return;
}
// Split the point collection around the center point on this dimension
auto split_point = std::partition(
points.begin(), points.end(),
[&](const auto& p) -> bool {
return (get(point_map, p)[int(dimension)] < center[int(dimension)]);
}
);
// Further subdivide the first side of the split
std::bitset<Tree::dimension> coord_left = coord;
coord_left[dimension] = false;
reassign_points(tree, point_map, n, center, {points.begin(), split_point}, coord_left, dimension + 1);
// Further subdivide the second side of the split
std::bitset<Tree::dimension> coord_right = coord;
coord_right[dimension] = true;
reassign_points(tree, point_map, n, center, {split_point, points.end()}, coord_right, dimension + 1);
}
/*!
\ingroup PkgOrthtreeTraits
Traits class for defining an orthtree of points using the class `CGAL::Orthtree`.
\tparam GeomTraits model of `Kernel`.
\tparam PointRange must be a model of `Range` whose value type is the key type of `PointMap` and whose iterator type is model of `RandomAccessIterator`
\tparam PointMap must be a model of `ReadablePropertyMap` whose value type is a point type from `GeomTraits` matching the current dimension
\tparam dimension the dimension of the ambient Euclidean space.
\warning The input point set is not copied. It is used directly
and is rearranged by the `Orthtree`. Altering the point range
after creating the orthtree will leave it in an invalid state.
\cgalModels{CollectionPartitioningOrthtreeTraits}
\sa `CGAL::Octree`
\sa `CGAL::Quadtree`
\sa `CGAL::Orthtree_traits_base<GeomTraits, dimension>`
*/
template <
typename GeomTraits,
typename PointRange,
typename PointMap = Identity_property_map<typename std::iterator_traits<typename PointRange::iterator>::value_type>,
bool hypercubic_nodes = false,
int dimension = Ambient_dimension<
typename std::iterator_traits<typename PointRange::iterator>::value_type,
GeomTraits
>::value
>
struct Orthtree_traits_point : public Orthtree_traits_base<GeomTraits, dimension> {
public:
/// \name Types
/// @{
using Node_data = boost::iterator_range<typename PointRange::iterator>;
/// @}
using Base = Orthtree_traits_base<GeomTraits, dimension>;
using Self = Orthtree_traits_point<GeomTraits, PointRange, PointMap, hypercubic_nodes, dimension>;
using Tree = Orthtree<Self>;
using Node_index = typename Base::Node_index;
using Node_data_element = typename std::iterator_traits<typename PointRange::iterator>::value_type;
static_assert(std::is_same_v<typename std::iterator_traits<typename PointRange::iterator>::iterator_category, std::random_access_iterator_tag>);
Orthtree_traits_point(
PointRange& points,
PointMap point_map = PointMap()
) : m_points(points), m_point_map(point_map) {}
using Construct_root_node_bbox = typename Self::Bbox_d(*)();
auto construct_root_node_bbox_object() const {
return [&]() -> typename Self::Bbox_d {
std::array<typename Self::FT, Self::dimension> bbox_min, bbox_max;
Orthtrees::internal::Cartesian_ranges<Self> cartesian_range;
// init bbox with first values found
{
const typename Self::Point_d& point = get(m_point_map, *(m_points.begin()));
std::size_t i = 0;
for (const typename Self::FT& x: cartesian_range(point)) {
bbox_min[i] = x;
bbox_max[i] = x;
++i;
}
}
// Expand bbox to contain all points
for (const auto& p: m_points) {
const typename Self::Point_d& point = get(m_point_map, p);
std::size_t i = 0;
for (const typename Self::FT& x: cartesian_range(point)) {
bbox_min[i] = (std::min)(x, bbox_min[i]);
bbox_max[i] = (std::max)(x, bbox_max[i]);
++i;
}
}
#if !defined(_MSC_VER) || _MSC_VER > 1920
if constexpr (hypercubic_nodes) {
#else
if (hypercubic_nodes) {
#endif
std::array<typename Self::FT, Self::dimension> center;
typename Self::FT max_side = 0;
for (int i = 0; i < Self::dimension; i++) {
typename Self::FT side = bbox_max[i] - bbox_min[i];
max_side = (std::max<typename Self::FT>)(max_side, side);
center[i] = (bbox_min[i] + bbox_max[i]) * 0.5f;
}
max_side *= 0.5f;
for (int i = 0; i < Self::dimension; i++) {
bbox_min[i] = center[i] - max_side;
bbox_max[i] = center[i] + max_side;
}
}
return {std::apply(Self::construct_point_d_object(), bbox_min),
std::apply(Self::construct_point_d_object(), bbox_max)};
};
}
struct Construct_root_node_contents {
PointRange& m_points;
Construct_root_node_contents(PointRange& points) : m_points(points) {}
typename Self::Node_data operator()() {
return { m_points.begin(), m_points.end() };
}
};
Construct_root_node_contents construct_root_node_contents_object() const {
return Construct_root_node_contents(m_points);
}
struct Distribute_node_contents {
const PointMap m_point_map;
Distribute_node_contents(const PointMap& point_map) : m_point_map(point_map) {}
void operator()(Node_index n, Tree& tree, const typename Self::Point_d& center) {
CGAL_precondition(!tree.is_leaf(n));
reassign_points(tree, m_point_map, n, center, tree.data(n));
};
};
Distribute_node_contents distribute_node_contents_object() const {
return Distribute_node_contents(m_point_map);
}
using Construct_sphere_d = typename Self::Sphere_d(*)(const typename Self::Point_d&, const typename Self::FT&);
Construct_sphere_d construct_sphere_d_object() const {
return [](const typename Self::Point_d& center, const typename Self::FT& squared_radius) -> typename Self::Sphere_d {
return typename Self::Sphere_d(center, squared_radius);
};
}
using Construct_center_d = typename Self::Point_d(*)(const typename Self::Sphere_d&);
Construct_center_d construct_center_d_object() const {
return [](const typename Self::Sphere_d& sphere) -> typename Self::Point_d {
return sphere.center();
};
}
using Compute_squared_radius_d = typename Self::FT(*)(const typename Self::Sphere_d&);
Compute_squared_radius_d compute_squared_radius_d_object() const {
return [](const typename Self::Sphere_d& sphere) -> typename Self::FT {
return sphere.squared_radius();
};
}
struct Squared_distance_of_element {
const PointMap m_point_map;
Squared_distance_of_element(const PointMap& point_map) : m_point_map(point_map) {}
typename Self::FT operator()(const Node_data_element& index, const typename Self::Point_d& point) {
return CGAL::squared_distance(get(m_point_map, index), point);
};
};
Squared_distance_of_element squared_distance_of_element_object() const {
return Squared_distance_of_element(m_point_map);
}
PointRange& m_points;
PointMap m_point_map;
};
}
#endif //ORTHTREE_TESTS_ORTHTREE_TRAITS_POINT_H