cgal/Packages/Interval_arithmetic/include/CGAL/Lazy_exact_nt.h

475 lines
12 KiB
C++

// ============================================================================
//
// Copyright (c) 1999,2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Lazy_exact_nt.h
// revision : $Revision$
// revision_date : $Date$
// package : Interval Arithmetic
// author(s) : Sylvain Pion
// coordinator : INRIA Sophia-Antipolis (<Mariette.Yvinec@sophia.inria.fr>)
//
// ============================================================================
#ifndef CGAL_LAZY_EXACT_NT_H
#define CGAL_LAZY_EXACT_NT_H
#include <CGAL/basic.h>
#include <CGAL/number_utils.h>
#include <CGAL/number_utils_classes.h>
#include <CGAL/Interval_arithmetic.h>
#include <CGAL/Handle.h>
#include <CGAL/misc.h>
/*
* This file contains the definition of the number type Lazy_exact_nt<ET>,
* where ET is an exact number type (must provide the exact operations needed).
*
* Lazy_exact_nt<ET> provides a DAG-based lazy evaluation, like LEDA's real,
* Core's Expr, LEA's lazy rationals...
*
* The values are first approximated using Interval_base.
* The exactness is provided when needed by ET.
*
* Lazy_exact_nt<ET> is just a handle to the abstract base class
* Lazy_exact_rep which has pure virtual methods .approx() and .exact().
* From this class derives one class per operation, with one constructor.
*
* The DAG is managed by :
* - Handle and Rep.
* - virtual functions to denote the various operators (instead of an enum).
*
* Other packages with vaguely similar design : APU, MetaCGAL, LOOK.
*/
/*
* TODO :
* - Generalize it for constructions at the kernel level.
* - Interval rafinement functionnality ?
* - Separate the handle and the representation(s) in 2 files (?)
* maybe not a good idea, better if everything related to one operation is
* close together.
* - Add a CT template parameter like Filtered_exact_nt<> ?
* - Add a string constant to provide an expression string (a la MetaCGAL) ?
* // virtual ostream operator<<() const = 0; // or string, like Core ?
*/
/*
* Interface of the rep classes:
* - .approx() returns Interval_nt<> (assumes rounding=nearest).
* [ only called from the handle, and declared in the base ]
* - .exact() returns ET, if not already done, computes recursively
*
* - .rafine_approx() later we can do that (having a birthdate like LOOK ?).
* could use update_approx().
*/
CGAL_BEGIN_NAMESPACE
template <typename ET> class Lazy_exact_nt;
// Abstract base representation class
template <typename ET>
struct Lazy_exact_rep : public Rep
{
Interval_base in; // could be const, except for rafinement ? or mutable ?
ET *et;
Lazy_exact_rep (const Interval_base i)
: in(i), et(NULL) {}
Interval_nt<> approx() const // Better return a const ref instead ?
{
return in;
}
ET exact() // Better return a const ref instead ?
{
if (et==NULL)
update_exact();
return *et;
}
virtual void update_approx() = 0; // Not used anymore... at the moment :)
virtual void update_exact() = 0;
virtual ~Lazy_exact_rep () {};
};
// int constant
template <typename ET>
struct Lazy_exact_Int_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Int_Cst (int i)
: Lazy_exact_rep<ET>(double(i)) {}
void update_approx() { CGAL_assertion(false); }
void update_exact() { et = new ET((int)in.inf()); }
};
// double constant
template <typename ET>
struct Lazy_exact_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Cst (double d)
: Lazy_exact_rep<ET>(d) {}
void update_approx() { CGAL_assertion(false); }
void update_exact() { et = new ET(in.inf()); }
};
// Unary operations: abs, sqrt, square.
// Binary operations: +, -, *, /, min, max.
// Base unary operation
template <typename ET>
struct Lazy_exact_unary : public Lazy_exact_rep<ET>
{
const Lazy_exact_nt<ET> op1;
Lazy_exact_unary (const Interval_base &i, const Lazy_exact_nt<ET> &a)
: Lazy_exact_rep<ET>(i), op1(a) {}
};
// Base binary operation
template <typename ET>
struct Lazy_exact_binary : public Lazy_exact_unary<ET>
{
const Lazy_exact_nt<ET> op2;
Lazy_exact_binary (const Interval_base &i,
const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_unary<ET>(i, a), op2(b) {}
};
// Exact constant
template <typename ET>
struct Lazy_exact_Ex_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Ex_Cst (const ET & e)
: Lazy_exact_rep<ET>(to_interval(e))
{
et = new ET(e);
}
void update_approx() { CGAL_assertion(false); }
void update_exact() { CGAL_assertion(false); }
};
// Here we could use a template class for all operations (STL provides
// function objects plus, minus, multiplies, divides...). But it would require
// a template template parameter, and GCC 2.95 seems to crash easily with them.
// Macro for unary operations
#define CGAL_LAZY_UNARY_OP(OP, NAME) \
template <typename ET> \
struct NAME : public Lazy_exact_unary<ET> \
{ \
NAME (const Lazy_exact_nt<ET> &a) \
: Lazy_exact_unary<ET>(OP(a.approx()), a) {} \
\
void update_approx() { in = OP(op1.approx()); } \
void update_exact() { et = new ET(OP(op1.exact())); } \
};
CGAL_LAZY_UNARY_OP(CGAL_NTS abs, Lazy_exact_Abs)
CGAL_LAZY_UNARY_OP(CGAL_NTS square, Lazy_exact_Square)
CGAL_LAZY_UNARY_OP(CGAL::sqrt, Lazy_exact_Sqrt)
// A macro for +, -, * and /
#define CGAL_LAZY_BINARY_OP(OP, NAME) \
template <typename ET> \
struct NAME : public Lazy_exact_binary<ET> \
{ \
NAME (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b) \
: Lazy_exact_binary<ET>(a.approx() OP b.approx(), a, b) {} \
\
void update_approx() { in = op1.approx() OP op2.approx(); } \
void update_exact() { et = new ET(op1.exact() OP op2.exact()); } \
};
CGAL_LAZY_BINARY_OP(+, Lazy_exact_Add)
CGAL_LAZY_BINARY_OP(-, Lazy_exact_Sub)
CGAL_LAZY_BINARY_OP(*, Lazy_exact_Mul)
CGAL_LAZY_BINARY_OP(/, Lazy_exact_Div)
// Minimum
template <typename ET>
struct Lazy_exact_Min : public Lazy_exact_binary<ET>
{
Lazy_exact_Min (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_binary<ET>(min(a.approx(), b.approx()), a, b) {}
void update_approx() { in = min(op1.approx(), op2.approx()); }
void update_exact() { et = new ET(min(op1.exact(), op2.exact())); }
};
// Maximum
template <typename ET>
struct Lazy_exact_Max : public Lazy_exact_binary<ET>
{
Lazy_exact_Max (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_binary<ET>(max(a.approx(), b.approx()), a, b) {}
void update_approx() { in = max(op1.approx(), op2.approx()); }
void update_exact() { et = new ET(max(op1.exact(), op2.exact())); }
};
// The real number type, handle class
template <typename ET>
class Lazy_exact_nt : public Handle
{
public :
typedef Lazy_exact_nt<ET> Self;
typedef Lazy_exact_rep<ET> Self_rep;
// Lazy_exact_nt () {} // Handle is not such a nice stuff... at the moment.
Lazy_exact_nt (Self_rep *r)
{ PTR = r; }
// Operations
Lazy_exact_nt (double d)
{ PTR = new Lazy_exact_Cst<ET>(d); }
Lazy_exact_nt (int i = 0)
{ PTR = new Lazy_exact_Int_Cst<ET>(i); }
Lazy_exact_nt (const ET & e)
{ PTR = new Lazy_exact_Ex_Cst<ET>(e); }
Self operator+ (const Self & a) const
{ return new Lazy_exact_Add<ET>(*this, a); }
Self operator- (const Self & a) const
{ return new Lazy_exact_Sub<ET>(*this, a); }
Self operator* (const Self & a) const
{ return new Lazy_exact_Mul<ET>(*this, a); }
Self operator/ (const Self & a) const
{ return new Lazy_exact_Div<ET>(*this, a); }
Interval_nt<> approx() const // throw() ?
{ return ptr()->approx(); }
Interval_nt_advanced approx_adv() const
{ return ptr()->approx(); }
ET exact() const
{ return ptr()->exact(); }
// The other comparison operators are currently provided by the STL.
bool operator< (const Self & a) const
{
try
{
return approx() < a.approx();
}
catch (Interval_base::unsafe_comparison)
{
std::cerr << "Interval filter failure (<)" << std::endl;
return exact() < a.exact();
}
}
bool operator== (const Self & a) const
{
try
{
return approx() == a.approx();
}
catch (Interval_base::unsafe_comparison)
{
std::cerr << "Interval filter failure (==)" << std::endl;
return exact() == a.exact();
}
}
private:
Self_rep * ptr() const { return (Self_rep*) PTR; }
};
template <typename ET>
inline
double
to_double(const Lazy_exact_nt<ET> & a)
{
return CGAL::to_double(a.approx());
}
template <typename ET>
inline
Interval_base
to_interval(const Lazy_exact_nt<ET> & a)
{
return a.approx();
}
// VC++ doesn't support partial overloading of function templates.
// The other way would be to not define the global templates so that
// they don't interfere with template NTs.
#ifndef _MSC_VER
// Note: GCC 2.95 completely and silently ignores the catch block
// of _template_ function-try-blocks. Later versions fix the bug.
namespace NTS {
template <typename ET>
inline
Sign
sign(const Lazy_exact_nt<ET> & a)
{
try
{
return CGAL_NTS sign(a.approx());
}
catch (Interval_base::unsafe_comparison)
{
std::cerr << "Interval filter failure (sign)" << std::endl;
return CGAL_NTS sign(a.exact());
}
}
template <typename ET>
inline
Comparison_result
compare(const Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{
try
{
return CGAL_NTS compare(a.approx(), b.approx());
}
catch (Interval_base::unsafe_comparison)
{
std::cerr << "Interval filter failure (compare)" << std::endl;
return CGAL_NTS compare(a.exact(), b.exact());
}
}
template <typename ET>
inline
Lazy_exact_nt<ET>
abs(const Lazy_exact_nt<ET> & a)
{ return new Lazy_exact_Abs<ET>(a); }
template <typename ET>
inline
Lazy_exact_nt<ET>
square(const Lazy_exact_nt<ET> & a)
{ return new Lazy_exact_Square<ET>(a); }
} // namespace NTS
#endif // _MSC_VER
template <typename ET>
inline
Lazy_exact_nt<ET>
sqrt(const Lazy_exact_nt<ET> & a)
{ return new Lazy_exact_Sqrt<ET>(a); }
#ifndef _MSC_VER
template <typename ET>
inline
Lazy_exact_nt<ET>
min(const Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return new Lazy_exact_Min<ET>(a, b); }
template <typename ET>
inline
Lazy_exact_nt<ET>
max(const Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return new Lazy_exact_Max<ET>(a, b); }
#endif // _MSC_VER
template <typename ET>
std::ostream &
operator<< (std::ostream & os, const Lazy_exact_nt<ET> & a)
{ return os << a.approx(); }
template <typename ET>
std::istream &
operator>> (std::istream & is, Lazy_exact_nt<ET> & a)
{
ET e;
is >> e;
a = e;
return is;
}
template <typename ET>
inline
Lazy_exact_nt<ET> &
operator+=(Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return a = a + b; }
template <typename ET>
inline
Lazy_exact_nt<ET> &
operator-=(Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return a = a - b; }
template <typename ET>
inline
Lazy_exact_nt<ET> &
operator*=(Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return a = a * b; }
template <typename ET>
inline
Lazy_exact_nt<ET> &
operator/=(Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return a = a / b; }
template <typename ET>
inline
bool
is_finite(const Lazy_exact_nt<ET> & a)
{
return is_finite(a.approx()) || is_finite(a.exact());
}
template <typename ET>
inline
bool
is_valid(const Lazy_exact_nt<ET> & a)
{
return is_valid(a.approx()) || is_valid(a.exact());
}
template <typename ET>
inline
io_Operator
io_tag (const Lazy_exact_nt<ET>&)
{ return io_Operator(); }
template <typename ET>
inline
Number_tag
number_type_tag (const Lazy_exact_nt<ET>&)
{ return Number_tag(); }
#ifndef CGAL_CFG_NO_PARTIAL_CLASS_TEMPLATE_SPECIALISATION
template <typename ET>
struct converter<ET, Lazy_exact_nt<ET> >
{
static inline ET do_it (const Lazy_exact_nt<ET> & z)
{
return z.exact();
}
};
#endif
CGAL_END_NAMESPACE
#endif // CGAL_LAZY_EXACT_NT_H