cgal/Packages/Triangulation_2/include/CGAL/Regular_triangulation_2.h

1129 lines
32 KiB
C++

// ============================================================================
//
// Copyright (c) 1997 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Regular_triangulation_2.h
// source : $RCSfile$
// revision : $Revision$
// revision_date : $Date$
// author(s) : Frederic Fichel, Mariette Yvinec, Julia Floetotto
//
// coordinator : Mariette Yvinec <Mariette.Yvinec@sophia.inria.fr>
//
// ============================================================================
#ifndef CGAL_REGULAR_TRIANGULATION_2_H
#define CGAL_REGULAR_TRIANGULATION_2_H
#include <CGAL/Triangulation_2.h>
#include <CGAL/Regular_triangulation_face_base_2.h>
CGAL_BEGIN_NAMESPACE
template < class Gt,
class Tds = Triangulation_data_structure_using_list_2 <
Triangulation_vertex_base_2<Gt>,
Regular_triangulation_face_base_2<Gt> > >
class Regular_triangulation_2 : public Triangulation_2<Gt,Tds>
{
public:
typedef Triangulation_2<Gt,Tds> Triangulation;
typedef Gt Geom_traits;
typedef typename Gt::Bare_point Point;
typedef typename Gt::Weighted_point Weighted_point;
typedef typename Gt::Weight Weight;
typedef typename Triangulation::Face_handle Face_handle;
typedef typename Triangulation::Vertex_handle Vertex_handle;
typedef typename Triangulation::Edge Edge;
typedef typename Triangulation::Locate_type Locate_type;
typedef typename Triangulation::Face_circulator Face_circulator;
typedef typename Triangulation::Edge_circulator Edge_circulator;
typedef typename Triangulation::Finite_edges_iterator Finite_edges_iterator;
typedef typename Triangulation::Finite_faces_iterator Finite_faces_iterator;
typedef typename Triangulation::Finite_vertices_iterator
Finite_vertices_iterator;
// a list to memorise temporary the faces around a point
typedef std::list<Face_handle> Faces_around_stack;
// point list
typedef std::list<Weighted_point> Weighted_point_list;
public:
Regular_triangulation_2(const Gt& gt=Gt()) : Triangulation(gt) {}
Regular_triangulation_2(const Regular_triangulation_2 &rt)
: Triangulation(rt)
{ CGAL_triangulation_postcondition( is_valid() ); }
// CHECK - QUERY
Oriented_side power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r,
const Weighted_point &s) const;
Oriented_side power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r) const;
Oriented_side power_test(const Face_handle &f,
const Weighted_point &p) const;
Oriented_side power_test(const Face_handle& f, int i,
const Weighted_point &p) const;
bool is_valid(bool verbose = false, int level = 0) const;
void affiche_tout();
// DUAL
Point dual (Face_handle f) const;
Object dual(const Edge &e) const ;
Object dual(const Edge_circulator& ec) const;
Object dual(const Finite_edges_iterator& ei) const;
Point weighted_circumcenter(Face_handle f) const;
Point weighted_circumcenter(const Weighted_point& p0,
const Weighted_point& p1,
const Weighted_point& p2) const;
// Insertion, Deletion and Flip
Vertex_handle push_back(const Weighted_point &p);
Vertex_handle insert(const Weighted_point &p,
Face_handle f = Face_handle() );
Vertex_handle insert(const Weighted_point &p,
Locate_type lt,
Face_handle loc, int li );
Vertex_handle insert_in_face(const Weighted_point &p, Face_handle f);
Vertex_handle insert_in_edge(const Weighted_point &p, Face_handle f, int i);
void flip(Face_handle f, int i);
void remove_degree_3(const Vertex_handle v, Face_handle f = Face_handle());
void remove(Vertex_handle v);
private:
void regularize(Vertex_handle v);
void remove_2D(Vertex_handle v);
void fill_hole_regular(std::list<Edge> & hole);
void update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3);
void update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2);
void update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3);
void hide_vertex(const Face_handle& f, const Weighted_point& p);
void stack_flip(Vertex_handle v, Faces_around_stack &faces_around);
void stack_flip_4_2(Face_handle f, int i, int j,
Faces_around_stack &faces_around);
void stack_flip_3_1(Face_handle f, int i, int j,
Faces_around_stack &faces_around);
void stack_flip_2_2(Face_handle f, int i,
Faces_around_stack &faces_around);
void stack_flip_dim1(Face_handle f, int i);
public:
template < class InputIterator >
int
insert(InputIterator first, InputIterator last)
{
int n = number_of_vertices();
while(first != last)
{
insert(*first);
++first;
}
return number_of_vertices() - n;
}
template < class Stream>
Stream& draw_dual(Stream & ps) const
{
Finite_edges_iterator eit= finite_edges_begin();
for (; eit != finite_edges_end(); ++eit) {
Object o = dual(eit);
typename Geom_traits::Line_2 l;
typename Geom_traits::Ray_2 r;
typename Geom_traits::Segment_2 s;
if (CGAL::assign(s,o)) ps << s;
if (CGAL::assign(r,o)) ps << r;
if (CGAL::assign(l,o)) ps << l;
}
return ps;
}
};
template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle &f, const Weighted_point &p) const
{
// p is supposed to be a finite point
// if f is a finite face,
// return ON_NEGATIVE_SIDE if p is above f
// (p has to be hidden)
int i;
if ( ! f->has_vertex(infinite_vertex(), i) )
return power_test(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point(),p);
Orientation o = orientation(f->vertex(ccw(i))->point(),
f->vertex( cw(i))->point(),
p);
if (o==COLLINEAR)
return power_test(f->vertex(ccw(i))->point(),
f->vertex( cw(i))->point(),p);
return Oriented_side(o);
}
template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle& f, int i,
const Weighted_point &p) const
{
// f is supposed to be a finite edge
// p is supposed to be on edge (f,i)
// return ON_NEGATIVE_SIDE if p is above (f,i)
// (p has to be hidden)
CGAL_triangulation_precondition (!is_infinite(f,i) &&
orientation(f->vertex(ccw(i))->point(),
f->vertex( cw(i))->point(),
p) == COLLINEAR);
return power_test(f->vertex(ccw(i))->point(),
f->vertex( cw(i))->point(),
p);
}
template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r,
const Weighted_point &s) const
{
return geom_traits().power_test_2_object()(p,q,r,s);
}
template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r) const
{
return geom_traits().power_test_degenerated_2_object()(p,q,r);
}
template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid(bool verbose, int level) const
{
if (number_of_vertices() <= 1) return true;
bool result = Triangulation_2<Gt,Tds>::is_valid(verbose, level);
for(Finite_faces_iterator it = finite_faces_begin();
it != finite_faces_end(); it++)
{
for(int i=0; i<3; i++)
{
if (!is_infinite(it->vertex(i)))
result = result && ON_POSITIVE_SIDE !=
power_test(it->neighbor(i), it->vertex(i)->point());
// if (!result)
// {
// std::cerr << "face : " << (void*)&(*it)<< " "
// <<"["<< it->vertex(0)->point()
// <<"/"<< it->vertex(1)->point()
// <<"/"<< it->vertex(2)->point()<<"]"<< std::endl
// << "voisin : " << (void*)&(*(it->neighbor(i)))<< " "
// <<"["<<(it->neighbor(i))->vertex(0)->point()
// <<"/"<<(it->neighbor(i))->vertex(1)->point()
// <<"/"<<(it->neighbor(i))->vertex(2)->point()<<"]" << std::endl;
// }
CGAL_triangulation_assertion(result);
}
typename Weighted_point_list::iterator plit = it->point_list().begin(),
pldone = it->point_list().end();
for (; plit != pldone; plit++)
{
result = result && power_test(it, *plit) == ON_NEGATIVE_SIDE;
if (!result)
{
std::cerr << "face : " << (void*)&(*it)<< " "
<<"["<< it->vertex(0)->point()
<<"/"<< it->vertex(1)->point()
<<"/"<< it->vertex(2)->point()<<"]" << std::endl
<< "hidden point : " << *plit << std::endl;
}
CGAL_triangulation_assertion(result);
}
}
return result;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
affiche_tout()
{
std::cerr<< "AFFICHE TOUTE LA TRIANGULATION :"<<std::endl;
Finite_faces_iterator fi , fi_end=finite_faces_end();
std::cerr << std::endl<<"====> "<<this<<std::endl;
fi=finite_faces_begin();
std::cerr<<"***"<<std::endl;
while(fi != fi_end)
{
std::cerr << "face : "<<(void*)&(*fi)<<" => "<<std::endl;
std::cerr <<"point :"<<(fi->vertex(0)->point())
<<" / voisin "<<&(*(fi->neighbor(0)))
<<"["<<(fi->neighbor(0))->vertex(0)->point()
<<"/"<<(fi->neighbor(0))->vertex(1)->point()
<<"/"<<(fi->neighbor(0))->vertex(2)->point()<<"]"
<<std::endl;
std::cerr <<"point :"<<(fi->vertex(1)->point())
<<" / voisin "<<&(*(fi->neighbor(1)))
<<"["<<(fi->neighbor(1))->vertex(0)->point()
<<"/"<<(fi->neighbor(1))->vertex(1)->point()
<<"/"<<(fi->neighbor(1))->vertex(2)->point()<<"]"
<<std::endl;
std::cerr <<"point :"<<(fi->vertex(2)->point())
<<" / voisin "<<&(*(fi->neighbor(2)))
<<"["<<(fi->neighbor(2))->vertex(0)->point()
<<"/"<<(fi->neighbor(2))->vertex(1)->point()
<<"/"<<(fi->neighbor(2))->vertex(2)->point()<<"]"
<<std::endl;
typename Weighted_point_list::iterator current;
std::cerr << " +++++>>> ";
for (current= fi->point_list().begin() ;
current!= fi->point_list().end() ; current++ )
{
std::cerr <<"[ "<< (*current) << " ] , ";
}
std::cerr <<std::endl;
++fi;
}
std::cerr <<"faces infinies "<<std::endl;
if ( number_of_vertices() <= 2) {return;}
Face_circulator fc =
infinite_vertex()->incident_faces(),fcdone(fc);
do {
std::cerr<<(void*)&(*fc) <<" = "<< fc->vertex(0)->point()<<" / "
<< fc->vertex(1)->point()<<" / "<< fc->vertex(2)->point()
<<" / ";
typename Weighted_point_list::iterator current;
std::cerr << " +++++>>> ";
for (current= fc->point_list().begin() ;
current!= fc->point_list().end() ; current++ )
{
std::cerr <<"[ "<< (*current) << " ] , ";
}
std::cerr <<std::endl;
}while(++fc != fcdone);
std::cerr <<std::endl;
if (number_of_vertices()>1) {
std::cerr << "affichage des sommets de la triangulation reguliere"
<<std::endl;
Finite_vertices_iterator vi;
vi=finite_vertices_begin();
if (number_of_vertices()>1) {
while ( vi!=vertices_end() ) {
//std::cerr << "* "<< &(*vi) <<" / ";
std::cerr << "* "<< vi->point() <<" / face associee : "
<< (void*)(&(*(vi->face())))<<std::endl;;
++vi;
}
std::cerr<<std::endl;
}
}
}
//DUALITY
template < class Gt, class Tds >
inline
Regular_triangulation_2<Gt,Tds>::Point
Regular_triangulation_2<Gt,Tds>::
dual (Face_handle f) const
{
return weighted_circumcenter(f);
}
template < class Gt, class Tds >
inline
Regular_triangulation_2<Gt,Tds>::Point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(Face_handle f) const
{
CGAL_triangulation_precondition (dimension()==2 || !is_infinite(f));
return weighted_circumcenter(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point());
}
template<class Gt, class Tds>
inline
Regular_triangulation_2<Gt,Tds>::Point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(const Weighted_point& p0,
const Weighted_point& p1,
const Weighted_point& p2) const
{
return
geom_traits().construct_weighted_circumcenter_2_object()(p0,p1,p2);
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge &e) const
{
typedef typename Geom_traits::Line_2 Line;
typedef typename Geom_traits::Ray_2 Ray;
typedef typename Geom_traits::Direction_2 Direction;
typedef typename Geom_traits::Segment Segment;
CGAL_triangulation_precondition (! is_infinite(e));
if( dimension()== 1 ){
Weighted_point p = (e.first)->vertex(cw(e.second))->point();
Weighted_point q = (e.first)->vertex(ccw(e.second))->point();
Line l = geom_traits().construct_radical_axis_2_object()(p,q);
return Object(new Wrapper< Line >(l));
}
// dimension==2
if( (! is_infinite(e.first)) &&
(! is_infinite(e.first->neighbor(e.second))) ) {
Segment s = geom_traits().construct_segment_2_object()
(dual(e.first),dual(e.first->neighbor(e.second)));
return CGAL::Object(new CGAL::Wrapper< Segment >(s));
}
// one of the adjacent face is infinite
Face_handle f; int i;
if ( is_infinite(e.first)) {
f=e.first->neighbor(e.second); f->has_neighbor(e.first,i);
}
else {
f=e.first; i=e.second;
}
Weighted_point p = f->vertex( cw(i))->point();
Weighted_point q = f->vertex( ccw(i))->point();
Line l = geom_traits().construct_radical_axis_2_object()(p,q);
Direction d =
geom_traits().construct_direction_of_line_2_object()(l);
Ray r = geom_traits().construct_ray_2_object()(dual(f), d);
return CGAL::Object(new CGAL::Wrapper< Ray >(r));
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge_circulator& ec) const
{
return dual(*ec);
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Finite_edges_iterator& ei) const
{
return dual(*ei);
}
//INSERTION-REMOVAL
template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
push_back(const Weighted_point &p)
{
return insert(p);
}
template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Face_handle start)
{
Locate_type lt;
int li;
Face_handle loc = locate(p, lt, li, start);
return insert(p, lt, loc, li);
}
template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Locate_type lt, Face_handle loc, int li)
{
if (number_of_vertices() <= 1) return Triangulation::insert(p);
Vertex_handle v;
Oriented_side os;
switch (lt) {
case VERTEX:
remove(loc->vertex(li));
return insert(p);
case FACE:
if (power_test(loc,p) == ON_NEGATIVE_SIDE) {
hide_vertex(loc,p);
return v;
}
v = insert_in_face(p,loc);
break;
case EDGE:
os = dimension() == 1 ? power_test(loc,li,p) :
power_test(loc,p);
if (os == ON_NEGATIVE_SIDE) {
hide_vertex(loc, p);
return v;
}
v = insert_in_edge(p,loc,li);
break;
case OUTSIDE_CONVEX_HULL:
v = insert_outside_convex_hull(p,loc);
break;
case OUTSIDE_AFFINE_HULL:
v = insert_outside_affine_hull(p);
break;
default:
CGAL_triangulation_assertion_msg(false, "locate step failed");
}
regularize(v);
return v;
}
template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_face(const Weighted_point &p, Face_handle f)
{
Vertex_handle v = Triangulation::insert_in_face(p,f);
update_hidden_points_1_3(f,
f->neighbor(ccw(f->index(v))),
f->neighbor( cw(f->index(v))) );
return v;
}
template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_edge(const Weighted_point &p, Face_handle f, const int i)
{
Vertex_handle v = Triangulation::insert_in_edge(p,f,i);
if (dimension() == 1) {
Face_handle g = f->neighbor(1 - f->index(v));
update_hidden_points_2_2(f,g);
}
else { //dimension()==2
Face_handle g = (v==f->vertex(cw(i))) ? f->neighbor(ccw(i))
: f->neighbor( cw(i));
update_hidden_points_2_2(f,g);
update_hidden_points_2_2(f->neighbor(i), g->neighbor(i));
}
return v;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
regularize(Vertex_handle v)
{
CGAL_triangulation_precondition( v != infinite_vertex());
Faces_around_stack faces_around;
//initialise faces_around
if (dimension() == 1) {
faces_around.push_back(v->face());
faces_around.push_back(v->face()->neighbor(1- v->face()->index(v)));
}
else{ //dimension==2
Face_circulator fit = v->incident_faces(), done(fit);
do {
faces_around.push_back(fit++);
} while(fit != done);
}
while( ! faces_around.empty() )
stack_flip(v, faces_around);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
flip(Face_handle f, int i)
{
Face_handle n = f->neighbor(i);
Triangulation_2<Gt,Tds>::flip(f,i);
update_hidden_points_2_2(f,n);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_degree_3(const Vertex_handle v, Face_handle f)
{
if (f == Face_handle())
f=v->face();
update_hidden_points_3_1(f, f->neighbor( cw(f->index(v))),
f->neighbor(ccw(f->index(v))));
Triangulation_2<Gt,Tds>::remove_degree_3(v,f);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove(Vertex_handle v )
{
CGAL_triangulation_precondition(!v.is_null());
CGAL_triangulation_precondition(!is_infinite(v));
//if (number_of_vertices() <= 1) Triangulation::remove(v);
// Collect in p_list
// the points hidden by the face to be deleted
Weighted_point_list p_list;
if (dimension() == 1) {
Face_handle f = v->face();
Face_handle n = f->neighbor(1 - f->index(v));
p_list.splice(p_list.begin(), f->point_list());
p_list.splice(p_list.begin(), n->point_list());
}
else if (dimension() == 2 ) {
Face_circulator fc = v->incident_faces(),done(fc);
do {
p_list.splice(p_list.begin(), fc->point_list());
fc++;
}
while( fc != done);
}
if (dimension() <= 1) Triangulation::remove(v);
else remove_2D(v);
Weighted_point p;
while (! p_list.empty())
{
p=p_list.front();
p_list.pop_front();
insert(p);
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_2D(Vertex_handle v)
{
if (test_dim_down(v)) { _tds.remove_dim_down(&(*v)); }
else {
std::list<Edge> hole;
make_hole(v, hole);
fill_hole_regular(hole);
delete &(*v);
set_number_of_vertices(number_of_vertices()-1);
}
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
fill_hole_regular(std::list<Edge> & first_hole)
{
typedef std::list<Edge> Hole;
typedef std::list<Hole> Hole_list;
Hole hole;
Hole_list hole_list;
Face_handle ff, fn;
int i, ii, in;
hole_list.push_front(first_hole);
while (! hole_list.empty())
{
hole = hole_list.front();
hole_list.pop_front();
typename Hole::iterator hit = hole.begin();
// if the hole has only three edges, create the triangle
if (hole.size() == 3)
{
Face_handle newf = create_face();
hit = hole.begin();
for(int j=0; j<3; j++)
{
ff = (*hit).first;
ii = (*hit).second;
hit++;
ff->set_neighbor(ii,newf);
newf->set_neighbor(j,ff);
newf->set_vertex(newf->ccw(j),ff->vertex(ff->cw(ii)));
}
continue;
}
// else find an edge with two finite vertices
// on the hole boundary
// and the new triangle adjacent to that edge
// cut the hole and push it back
// first, ensure that a neighboring face
// whose vertices on the hole boundary are finite
// is the first of the hole
bool finite = false;
while (!finite)
{
ff = hole.front().first;
ii = hole.front().second;
if ( is_infinite(ff->vertex(cw(ii))) ||
is_infinite(ff->vertex(ccw(ii))))
{
hole.push_back(hole.front());
hole.pop_front();
}
else
finite = true;
}
// take the first neighboring face and pop it;
ff = hole.front().first;
ii = hole.front().second;
hole.pop_front();
Vertex_handle v0 = ff->vertex(ff->cw(ii));
Weighted_point p0 = v0->point();
Vertex_handle v1 = ff->vertex(ff->ccw(ii));
Weighted_point p1 = v1->point();
Vertex_handle v2 = infinite_vertex();
Weighted_point p2;
Vertex_handle vv;
Weighted_point p;
typename Hole::iterator hdone = hole.end();
hit = hole.begin();
typename Hole::iterator cut_after(hit);
// if tested vertex is c with respect to the vertex opposite
// to NULL neighbor,
// stop at the before last face;
hdone--;
while (hit != hdone)
{
fn = (*hit).first;
in = (*hit).second;
vv = fn->vertex(ccw(in));
if (is_infinite(vv))
{
if (is_infinite(v2))
cut_after = hit;
}
else
{ // vv is a finite vertex
p = vv->point();
if (orientation(p0,p1,p) ==
COUNTERCLOCKWISE)
{
if (is_infinite(v2))
{
v2=vv;
p2=p;
cut_after=hit;
}
else if (power_test(p0,p1,p2,p) ==
ON_POSITIVE_SIDE)
{
v2=vv;
p2=p;
cut_after=hit;
}
}
}
++hit;
}
// create new triangle and update adjacency relations
Face_handle newf = create_face(v0,v1,v2);
newf->set_neighbor(2,ff);
ff->set_neighbor(ii, newf);
//update the hole and push back in the Hole_List stack
// if v2 belongs to the neighbor following or preceding *f
// the hole remain a single hole
// otherwise it is split in two holes
fn = hole.front().first;
in = hole.front().second;
if (fn->has_vertex(v2, i) && i == (int)fn->ccw(in))
{
newf->set_neighbor(0,fn);
fn->set_neighbor(in,newf);
hole.pop_front();
hole.push_front(Edge(&(*newf),1));
hole_list.push_front(hole);
}
else
{
fn = hole.back().first;
in = hole.back().second;
if (fn->has_vertex(v2, i) && i == (int)fn->cw(in))
{
newf->set_neighbor(1,fn);
fn->set_neighbor(in,newf);
hole.pop_back();
hole.push_back(Edge(&(*newf),0));
hole_list.push_front(hole);
}
else
{ // split the hole in two holes
Hole new_hole;
++cut_after;
while (hole.begin() != cut_after)
{
new_hole.push_back(hole.front());
hole.pop_front();
}
hole.push_front(Edge(&(*newf),1));
new_hole.push_front(Edge(&(*newf),0));
hole_list.push_front(hole);
hole_list.push_front(new_hole);
}
}
}
}
// add the point_list of f2 and f3 to the point list of f1
// for the 3-1 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3)
{
(f1->point_list()).splice(f1->point_list().begin(),f2->point_list());
(f1->point_list()).splice(f1->point_list().begin(),f3->point_list());
}
// the points of the lists of 2 faces are sorted
// because of a 2-2 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2)
{
CGAL_triangulation_assertion(f1->has_neighbor(f2));
Weighted_point_list p_list;
p_list.splice(p_list.begin(),f1->point_list());
p_list.splice(p_list.begin(),f2->point_list());
// if one of the face is infinite,
// the other face hide all the points
if ( is_infinite(f1)) {
(f2->point_list()).splice(f2->point_list().begin(),p_list);
return;
}
if ( is_infinite(f2)) {
(f1->point_list()).splice(f1->point_list().begin(),p_list);
return;
}
if (dimension() == 1) {
Weighted_point a1 = f1->vertex(f1->index(f2))->point();
Weighted_point a2 = f2->vertex(f2->index(f1))->point();
Weighted_point a = f1->vertex(1-f1->index(f2))->point();
while ( ! p_list.empty() ) {
if ( compare_x(a, p_list.front()) ==
compare_x(a, a1) &&
compare_y(a, p_list.front()) ==
compare_y(a, a1))
(f1->point_list()).push_back(p_list.front());
else
(f2->point_list()).push_back(p_list.front());
p_list.pop_front();
}
return;
}
// from here f1 and f2 are finite 2-dimensional faces
int idx2 = f1->index(f2);
Vertex_handle v0=f1->vertex(ccw(idx2));
Vertex_handle v1=f1->vertex(cw(idx2));
CGAL_triangulation_assertion( !is_infinite(v0) && !is_infinite(v1));
while ( ! p_list.empty() )
{
if (orientation(v0->point(), v1->point(), p_list.front()) ==
COUNTERCLOCKWISE)
(f1->point_list()).push_back(p_list.front());
else
(f2->point_list()).push_back(p_list.front());
p_list.pop_front();
}
}
// The point list of f1 is separated into 3 lists
// for a 1-3 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3)
{
CGAL_triangulation_assertion(f1->has_neighbor(f2) &&
f2->has_neighbor(f3) &&
f3->has_neighbor(f1));
Weighted_point_list p_list;
p_list.splice(p_list.begin(),f1->point_list());
p_list.splice(p_list.begin(),f1->point_list());
p_list.splice(p_list.begin(),f1->point_list());
if (p_list.empty())
return;
// the following does not work if
// two of f1,f2 and f3 are twice neighbors
// but this cannot appear taking the assertion into account;
int idx2 = f1->index(f2),
idx3 = f1->index(f3);
Vertex_handle v2 = f1->vertex(idx2),
v3 = f1->vertex(idx3),
v0 = f1->vertex(3-(idx2+idx3)),
v1 = f2->vertex(f2->index(f1));
CGAL_triangulation_assertion(f2->has_vertex(v0) && f1->has_vertex(v0));
CGAL_triangulation_assertion(f3->has_vertex(v1));
CGAL_triangulation_assertion( ! is_infinite(v0));
// if two of f1, f2,and f3 are infinite
// the list goes entirely to the third finite face
// no orientation test necessary
// because the point list of an infinite face
// is only made of point projecting on its finite edge
if ( is_infinite(f1 ) && is_infinite(f2)) {
f3->point_list().splice(f3->point_list().begin(), p_list);
return;
}
if ( is_infinite(f1) && is_infinite(f3)) {
f2->point_list().splice(f2->point_list().begin(), p_list);
return;
}
if ( is_infinite(f2) && is_infinite(f3)){
f1->point_list().splice(f1->point_list().begin(), p_list);
return;
}
// if here, v1,v2,v3 and v0 are finite vertices
while(! p_list.empty())
{
if(orientation(v2->point(),v0->point(),p_list.front()) !=
orientation(v2->point(),v0->point(),v3->point()) )
{ // not in f1
if (orientation(v1->point(), v0->point(), p_list.front() ) !=
orientation(v1->point(), v0->point(), v3->point() ) )
// not in f2
f3->point_list().push_back(p_list.front());
else
f2->point_list().push_back(p_list.front());
}
else
f1->point_list().push_back(p_list.front());
p_list.pop_front();
}
}
// insert the point among the hidden points list
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
hide_vertex(const Face_handle& f, const Weighted_point& p)
{
f->point_list().push_back(p);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip(Vertex_handle v, Faces_around_stack &faces_around)
{
Face_handle f=faces_around.front();
faces_around.pop_front();
int i = f->index(v);
Face_handle n = f->neighbor(i);
// TODO : the 1dim-dimensional case
if (dimension() == 1 ) {
if ( is_infinite(f) || is_infinite(n) ) return;
if ( power_test( v->point(),
f->vertex(1-i)->point(),
n->vertex(n->index(f))->point()) ==
ON_NEGATIVE_SIDE) return;
stack_flip_dim1(f,i);
return;
}
// now dimension() == 2
//test the regularity of edge (f,i)
if( power_test(n, v->point()) == ON_NEGATIVE_SIDE)
return;
if(is_infinite(f,i))
{
int j = 3 - ( i + f->index(infinite_vertex()));
if ( f->vertex(j)->degree() == 4)
stack_flip_4_2(f,i,j,faces_around);
return;
}
// now f and n are both finite faces
int ni = n->index(f);
Orientation occw = orientation(f->vertex(i)->point(),
f->vertex(ccw(i))->point(),
n->vertex(ni)->point());
Orientation ocw = orientation(f->vertex(i)->point(),
f->vertex(cw(i))->point(),
n->vertex(ni)->point());
if (occw == LEFTTURN && ocw == RIGHTTURN) {
// quadrilater (f,n) is convex
stack_flip_2_2(f,i, faces_around);
return;
}
if (occw == RIGHTTURN && f->vertex(ccw(i))->degree() == 3) {
stack_flip_3_1(f,i,ccw(i),faces_around);
return;
}
if (ocw == LEFTTURN && f->vertex(cw(i))->degree() == 3) {
stack_flip_3_1(f,i,cw(i),faces_around);
return;
}
if (occw == COLLINEAR && f->vertex(ccw(i))->degree() == 4) {
stack_flip_4_2(f,i,ccw(i),faces_around);
return;
}
if (ocw == COLLINEAR && f->vertex(cw(i))->degree() == 4)
stack_flip_4_2(f,i,cw(i),faces_around);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_4_2(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
int k = 3-(i+j);
Face_handle g=f->neighbor(k);
if (!faces_around.empty())
{
if (faces_around.front() == g)
faces_around.pop_front();
else if (faces_around.back() == g)
faces_around.pop_back();
}
//union f with g and f->neihgbor(i) with g->f->neihgbor(i)
Face_handle fn = f->neighbor(i);
//Face_handle gn = g->neighbor(g->index(f->vertex(i)));
Vertex_handle vq = f->vertex(j);
_tds.flip( &(*f), i); //not using flip because the vertex j is flat.
update_hidden_points_2_2(f,fn);
Face_handle h1 = ( f->has_vertex(vq) ? fn : f);
hide_vertex(h1, vq->point());
remove_degree_3(vq,g);
faces_around.push_front(g);
faces_around.push_front(h1);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_3_1(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
int k = 3-(i+j);
Face_handle g=f->neighbor(k);
if (!faces_around.empty())
{
if (faces_around.front()== g)
faces_around.pop_front();
else if ( faces_around.back() == g)
faces_around.pop_back();
}
Vertex_handle vq= f->vertex(j);
hide_vertex(f,vq->point());
remove_degree_3(vq,f);
faces_around.push_front(f);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_2_2(Face_handle f, int i, Faces_around_stack & faces_around)
{
Vertex_handle vq = f->vertex(ccw(i));
flip(f,i);
if(f->has_vertex(vq)) {
faces_around.push_front(f->neighbor(ccw(i)));
faces_around.push_front(f);
}
else {
faces_around.push_front(f);
faces_around.push_front(f->neighbor(cw(i)));
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
//stack_flip_dim1(Face_handle f, int i, Faces_around_stack &faces_around)
stack_flip_dim1(Face_handle f, int i)
{
Face_handle n= f->neighbor(i);
int in = n->index(f);
f->set_vertex(1-i, n->vertex(in));
f->set_neighbor(i, n->neighbor(1-in));
n->neighbor(1-in)->set_neighbor(n->neighbor(1-in)->index(n), f);
(f->point_list()).splice(f->point_list().end(),n->point_list());
delete_face(n);
}
CGAL_END_NAMESPACE
#endif // CGAL_REGULAR_TRIANGULATION_2_H