cgal/Arrangement_2/include/CGAL/Arr_Bezier_curve_traits_2.h

782 lines
22 KiB
C++

// Copyright (c) 2006 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Iddo Hanniel <iddoh@cs.technion.ac.il>
#ifndef CGAL_ARR_BEZIER_CURVE_TRAITS_2_H
#define CGAL_ARR_BEZIER_CURVE_TRAITS_2_H
/*! \file
* Definition of the Arr_Bezier_curve_traits_2 class.
*/
#include <CGAL/tags.h>
#include <CGAL/Arr_traits_2/Bezier_curve_2.h>
#include <CGAL/Arr_traits_2/Bezier_point_2.h>
#include <CGAL/Arr_traits_2/Bezier_x_monotone_2.h>
#include <CGAL/Arr_traits_2/Bezier_cache.h>
#include <CGAL/Arr_traits_2/Bezier_bounding_rational_traits.h>
CGAL_BEGIN_NAMESPACE
/*! \class
* A traits class for maintaining an arrangement of Bezier curves with
* rational control points.
*
* The class is templated with four parameters:
* Rat_kernel A kernel that defines the type of control points.
* Alg_kernel A geometric kernel, where Alg_kernel::FT is the number type
* for the coordinates of arrangement vertices and is used to
* represent algebraic numbers.
* Nt_traits A number-type traits class. This class defines the Rational
* number type (should be the same as Rat_kernel::FT) and the
* Algebraic number type (should be the same as Alg_kernel::FT)
* and supports various operations on them.
* Bounding_traits A traits class for filtering the exact computations.
* By default we use the rational bounding traits.
*/
template <class RatKernel_, class AlgKernel_, class NtTraits_,
class BoundingTraits_ = Bezier_bounding_rational_traits<RatKernel_> >
class Arr_Bezier_curve_traits_2
{
public:
typedef RatKernel_ Rat_kernel;
typedef AlgKernel_ Alg_kernel;
typedef NtTraits_ Nt_traits;
typedef BoundingTraits_ Bounding_traits;
typedef Arr_Bezier_curve_traits_2<Rat_kernel,
Alg_kernel,
Nt_traits,
Bounding_traits> Self;
typedef typename Nt_traits::Integer Integer;
typedef typename Rat_kernel::FT Rational;
typedef typename Alg_kernel::FT Algebraic;
typedef typename Rat_kernel::Point_2 Rat_point_2;
typedef typename Alg_kernel::Point_2 Alg_point_2;
// Category tags:
typedef Tag_true Has_left_category;
typedef Tag_true Has_merge_category;
typedef Tag_false Has_boundary_category;
// Traits-class types:
typedef _Bezier_curve_2<Rat_kernel,
Alg_kernel,
Nt_traits,
Bounding_traits> Curve_2;
typedef _Bezier_x_monotone_2<Rat_kernel,
Alg_kernel,
Nt_traits,
Bounding_traits> X_monotone_curve_2;
typedef _Bezier_point_2<Rat_kernel,
Alg_kernel,
Nt_traits,
Bounding_traits> Point_2;
// Type definition for the vertical-tangnecy and intersection point cache.
typedef _Bezier_cache<Nt_traits> Bezier_cache;
private:
// Type definition for the bounded intersection points mapping.
typedef typename X_monotone_curve_2::Intersection_map Intersection_map;
// Data members:
Bezier_cache _cache; // Caches vertical tangency points and intersection
// points that have been exactly computed.
Intersection_map _inter_map; // Mapping curve pairs to their intersection
// points.
/*! \struct _Less_vertical_tangency_bounds
* Functor used inside Make_x_monotone_2 to sort points by their bounded
* t-parameter.
*/
struct _Less_vertical_tangency_bounds
{
typedef std::pair<typename Bounding_traits::Bez_point_bound,
typename Bounding_traits::Bez_point_bbox> Tang_bound;
bool operator() (const Tang_bound& b1,
const Tang_bound& b2) const
{
// Compare the pairs based on their t_min (this is possible, since the
// t-bounds are disjoint).
return (b1.first.t_min < b2.first.t_min);
}
};
public:
/*!
* Default constructor.
*/
Arr_Bezier_curve_traits_2 ()
{}
/// \name Functor definitions.
//@{
/*! \class Compare_x_2
* The Compare_x_2 functor.
*/
class Compare_x_2
{
private:
const Bezier_cache *p_cache;
public:
/*! Constructor. */
Compare_x_2 (const Bezier_cache& cache) :
p_cache (&cache)
{}
/*!
* Compare the x-coordinates of two points.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2);
* SMALLER if x(p1) < x(p2);
* EQUAL if x(p1) = x(p2).
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
return (p1.compare_x (p2,
const_cast<Bezier_cache&> (*p_cache)));
}
};
/*! Get a Compare_x_2 functor object. */
Compare_x_2 compare_x_2_object () const
{
return (Compare_x_2 (_cache));
}
/*! \class Compare_xy_2
* The Compare_xy_2 functor.
*/
class Compare_xy_2
{
private:
const Bezier_cache *p_cache;
public:
/*! Constructor. */
Compare_xy_2 (const Bezier_cache& cache) :
p_cache (&cache)
{}
/*!
* Compares two points lexigoraphically: by x, then by y.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
* SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2);
* EQUAL if the two points are equal.
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
return (p1.compare_xy (p2,
const_cast<Bezier_cache&> (*p_cache)));
}
};
/*! Get a Compare_xy_2 functor object. */
Compare_xy_2 compare_xy_2_object () const
{
return (Compare_xy_2 (_cache));
}
/*! \class Construct_min_vertex_2
* The Construct_min_vertex_2 functor.
*/
class Construct_min_vertex_2
{
public:
/*!
* Get the left endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The left endpoint.
*/
const Point_2& operator() (const X_monotone_curve_2 & cv) const
{
return (cv.left());
}
};
/*! Get a Construct_min_vertex_2 functor object. */
Construct_min_vertex_2 construct_min_vertex_2_object () const
{
return Construct_min_vertex_2();
}
/*! \class Construct_max_vertex_2
* The Construct_max_vertex_2 functor.
*/
class Construct_max_vertex_2
{
public:
/*!
* Get the right endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The right endpoint.
*/
const Point_2& operator() (const X_monotone_curve_2 & cv) const
{
return (cv.right());
}
};
/*! Get a Construct_max_vertex_2 functor object. */
Construct_max_vertex_2 construct_max_vertex_2_object () const
{
return Construct_max_vertex_2();
}
/*! \class Is_vertical_2
* The Is_vertical_2 functor.
*/
class Is_vertical_2
{
public:
/*!
* Check whether the given x-monotone curve is a vertical segment.
* \param cv The curve.
* \return (true) if the curve is a vertical segment; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv) const
{
return (cv.is_vertical());
}
};
/*! Get an Is_vertical_2 functor object. */
Is_vertical_2 is_vertical_2_object () const
{
return Is_vertical_2();
}
/*! \class Compare_y_at_x_2
* The Compare_y_at_x_2 functor.
*/
class Compare_y_at_x_2
{
private:
const Bezier_cache *p_cache;
public:
/*! Constructor. */
Compare_y_at_x_2 (const Bezier_cache& cache) :
p_cache (&cache)
{}
/*!
* Return the location of the given point with respect to the input curve.
* \param cv The curve.
* \param p The point.
* \pre p is in the x-range of cv.
* \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve;
* LARGER if y(p) > cv(x(p)), i.e. the point is above the curve;
* EQUAL if p lies on the curve.
*/
Comparison_result operator() (const Point_2& p,
const X_monotone_curve_2& cv) const
{
// Iddo: Need to enhance point_position (maybe in the future we will
// store subdivided subcurves).
return (cv.point_position (p,
const_cast<Bezier_cache&> (*p_cache)));
}
};
/*! Get a Compare_y_at_x_2 functor object. */
Compare_y_at_x_2 compare_y_at_x_2_object () const
{
return (Compare_y_at_x_2 (_cache));
}
/*! \class Compare_y_at_x_left_2
* The Compare_y_at_x_left_2 functor.
*/
class Compare_y_at_x_left_2
{
private:
const Bezier_cache *p_cache;
public:
/*! Constructor. */
Compare_y_at_x_left_2 (const Bezier_cache& cache) :
p_cache (&cache)
{}
/*!
* Compares the y value of two x-monotone curves immediately to the left
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* defined (lexicographically) to its left.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the left of p: SMALLER, LARGER or EQUAL.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
const Point_2& p) const
{
return (cv1.compare_to_left (cv2, p,
const_cast<Bezier_cache&> (*p_cache)));
}
};
/*! Get a Compare_y_at_x_left_2 functor object. */
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
{
return (Compare_y_at_x_left_2 (_cache));
}
/*! \class Compare_y_at_x_right_2
* The Compare_y_at_x_right_2 functor.
*/
class Compare_y_at_x_right_2
{
private:
const Bezier_cache *p_cache;
public:
/*! Constructor. */
Compare_y_at_x_right_2 (const Bezier_cache& cache) :
p_cache (&cache)
{}
/*!
* Compares the y value of two x-monotone curves immediately to the right
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* defined (lexicographically) to its right.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the right of p: SMALLER, LARGER or EQUAL.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
const Point_2& p) const
{
return (cv1.compare_to_right (cv2, p,
const_cast<Bezier_cache&> (*p_cache)));
}
};
/*! Get a Compare_y_at_x_right_2 functor object. */
Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const
{
return (Compare_y_at_x_right_2 (_cache));
}
/*! \class Equal_2
* The Equal_2 functor.
*/
class Equal_2
{
private:
const Bezier_cache *p_cache;
public:
/*! Constructor. */
Equal_2 (const Bezier_cache& cache) :
p_cache (&cache)
{}
/*!
* Check if the two x-monotone curves are the same (have the same graph).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are the same; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
return (cv1.equals (cv2,
const_cast<Bezier_cache&> (*p_cache)));
}
/*!
* Check if the two points are the same.
* \param p1 The first point.
* \param p2 The second point.
* \return (true) if the two point are the same; (false) otherwise.
*/
bool operator() (const Point_2& p1, const Point_2& p2) const
{
return (p1.equals (p2,
const_cast<Bezier_cache&> (*p_cache)));
}
};
/*! Get an Equal_2 functor object. */
Equal_2 equal_2_object () const
{
return (Equal_2 (_cache));
}
/*! \class Make_x_monotone_2
* The Make_x_monotone_2 functor.
*/
class Make_x_monotone_2
{
private:
Bezier_cache *p_cache;
public:
/*! Constructor. */
Make_x_monotone_2 (Bezier_cache& cache) :
p_cache (&cache)
{}
/*!
* Cut the given Bezier curve into x-monotone subcurves and insert them
* into the given output iterator.
* \param cv The curve.
* \param oi The output iterator, whose value-type is Object. The returned
* objects is a wrapper for an X_monotone_curve_2 object.
* \return The past-the-end iterator.
*/
template<class OutputIterator>
OutputIterator operator() (const Curve_2& B, OutputIterator oi)
{
// Try to compute the bounds of the vertical tangency points.
Bounding_traits bound_tr;
typename Bounding_traits::Control_point_vec cpts;
std::copy (B.control_points_begin(), B.control_points_end(),
std::back_inserter(cpts));
typedef std::pair<typename Bounding_traits::Bez_point_bound,
typename Bounding_traits::Bez_point_bbox> Tang_pair;
std::list<Tang_pair> tang_bounds;
bound_tr.vertical_tangency_points (cpts, 0, 1, tang_bounds);
// Sort the vertical tangency points according to their t parameters.
// Ron: Can't the bounding traits return them sorted?
tang_bounds.sort (_Less_vertical_tangency_bounds());
// Construct Point_2 from bounded tangency points.
std::list<Point_2> tang_points;
bool app_ok = true;
typename std::list<Tang_pair>::const_iterator iter;
for (iter = tang_bounds.begin(); iter != tang_bounds.end(); ++iter)
{
const typename Bounding_traits::Bez_point_bound& bound = iter->first;
const typename Bounding_traits::Bez_point_bbox& bbox = iter->second;
if (! bound.can_refine)
{
// If we cannot refine the vertical-tangency bound anymore, then
// we failed to bound the vertical tangency point.
// Iddo: In the future, we might want to use the info.
app_ok = false;
break;
}
// Construct an approximate vertical tangency point.
Point_2 pt;
if (bound.point_type ==
Bounding_traits::Bez_point_bound::RATIONAL_PT)
{
CGAL_assertion (CGAL::compare (bound.t_min, bound.t_max) == EQUAL);
Rational t0 = bound.t_min;
pt = Point_2 (B, t0);
}
else
{
pt.add_originator (typename Point_2::Originator(B, bound));
}
pt.set_bbox (bbox);
tang_points.push_back(pt);
}
// If bounding the approximated vertical-tangency points went fine,
// use these points as endpoint for the x-monotone subcurves.
if (app_ok)
{
// Create the x-monotone subcurves with approximate endpoints.
typename std::list<Point_2>::const_iterator pit;
Point_2 p0(B, Rational(0)); // A rational start point.
for (pit = tang_points.begin(); pit != tang_points.end(); ++pit)
{
*oi = CGAL::make_object (X_monotone_curve_2 (B, p0, *pit,
*p_cache));
++oi;
p0 = *pit;
}
Point_2 p1(B, Rational(1)); // A rational end point.
*oi = CGAL::make_object (X_monotone_curve_2 (B, p0, p1,
*p_cache));
return (oi);
}
// If we reached here then we have to compute the vertical-tangency
// points in an exact manner. We do this by considering all t-values
// on B(t) = (X(t), Y(t)), such that X'(t) = 0.
const typename Bezier_cache::Vertical_tangency_list&
vt_list = p_cache->get_vertical_tangencies (B.id(),
B.x_polynomial(),
B.x_norm());
// Create the x-monotone subcurves.
Point_2 p0 (B, Rational(0));
Point_2 p1;
typename Bezier_cache::Vertical_tangency_iter it;
for (it = vt_list.begin(); it != vt_list.end(); ++it)
{
p1 = Point_2 (B, *it);
*oi = CGAL::make_object (X_monotone_curve_2 (B, p0, p1,
*p_cache));
++oi;
p0 = p1;
}
// Create the final subcurve.
p1 = Point_2 (B, Rational(1));
*oi = CGAL::make_object (X_monotone_curve_2 (B, p0, p1,
*p_cache));
return (oi);
}
};
/*! Get a Make_x_monotone_2 functor object. */
Make_x_monotone_2 make_x_monotone_2_object ()
{
return (Make_x_monotone_2 (_cache));
}
/*! \class Split_2
* The Split_2 functor.
*/
class Split_2
{
public:
/*!
* Split a given x-monotone curve at a given point into two sub-curves.
* \param cv The curve to split
* \param p The split point.
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
* \param c2 Output: The right resulting subcurve (p is its left endpoint).
* \pre p lies on cv but is not one of its end-points.
*/
void operator() (const X_monotone_curve_2& cv, const Point_2 & p,
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
{
cv.split (p, c1, c2);
return;
}
};
/*! Get a Split_2 functor object. */
Split_2 split_2_object () const
{
return Split_2();
}
/*! \class Intersect_2
* The Intersect_2 functor.
*/
class Intersect_2
{
private:
Bezier_cache *p_cache;
Intersection_map *p_imap;
public:
/*! Constructor. */
Intersect_2 (Bezier_cache& cache, Intersection_map& imap) :
p_cache (&cache),
p_imap (&imap)
{}
/*!
* Find the intersections of the two given curves and insert them to the
* given output iterator.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param oi The output iterator.
* \return The past-the-end iterator.
*/
template<class OutputIterator>
OutputIterator operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
OutputIterator oi)
{
return (cv1.intersect (cv2, *p_imap, *p_cache, oi));
}
};
/*! Get an Intersect_2 functor object. */
Intersect_2 intersect_2_object ()
{
return (Intersect_2 (_cache, _inter_map));
}
/*! \class Are_mergeable_2
* The Are_mergeable_2 functor.
*/
class Are_mergeable_2
{
public:
/*!
* Check whether it is possible to merge two given x-monotone curves.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are mergeable - if they are supported
* by the same line and share a common endpoint; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
return (cv1.can_merge_with (cv2));
}
};
/*! Get an Are_mergeable_2 functor object. */
Are_mergeable_2 are_mergeable_2_object () const
{
return Are_mergeable_2();
}
/*! \class Merge_2
* The Merge_2 functor.
*/
class Merge_2
{
public:
/*!
* Merge two given x-monotone curves into a single curve (segment).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param c Output: The merged curve.
* \pre The two curves are mergeable, that is they are supported by the
* same conic curve and share a common endpoint.
*/
void operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
X_monotone_curve_2& c) const
{
c = cv1.merge (cv2);
return;
}
};
/*! Get a Merge_2 functor object. */
Merge_2 merge_2_object () const
{
return Merge_2();
}
//@}
/// \name Functor definitions for the Boolean set-operation traits.
//@{
/*! \class Compare_endpoints_xy_2
* The Compare_endpoints_xy_2 functor.
*/
class Compare_endpoints_xy_2
{
public:
/*!
* Compare the endpoints of an $x$-monotone curve lexicographically.
* (assuming the curve has a designated source and target points).
* \param cv The curve.
* \return SMALLER if the curve is directed right;
* LARGER if the curve is directed left.
*/
Comparison_result operator() (const X_monotone_curve_2& cv)
{
if (cv.is_directed_right())
return (SMALLER);
else
return (LARGER);
}
};
/*! Get a Compare_endpoints_xy_2 functor object. */
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{
return Compare_endpoints_xy_2();
}
/*! \class Construct_opposite_2
* The Construct_opposite_2 functor.
*/
class Construct_opposite_2
{
public:
/*!
* Construct an opposite x-monotone curve (with swapped source and target).
* \param cv The curve.
* \return The opposite curve.
*/
X_monotone_curve_2 operator() (const X_monotone_curve_2& cv)
{
return (cv.flip());
}
};
/*! Get a Construct_opposite_2 functor object. */
Construct_opposite_2 construct_opposite_2_object() const
{
return Construct_opposite_2();
}
//@}
};
CGAL_END_NAMESPACE
#endif