cgal/Spatial_searching/benchmark/Spatial_searching/nn3nanoflan.cpp

194 lines
5.8 KiB
C++

#include <CGAL/Timer.h>
#include <nanoflann.hpp>
#include <boost/lexical_cast.hpp>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <vector>
#include <CGAL/Memory_sizer.h>
#include <CGAL/IO/io.h>
using namespace std;
using namespace nanoflann;
template <typename T>
struct Point
{
Point(T x, T y, T z)
: x(x), y(y), z(z)
{}
T x,y,z;
};
template <typename T>
ostream& operator <<(ostream& os, const Point<T>& p)
{
os << p.x << " " << p.y << " " << p.z ;
return os;
}
// This is an exampleof a custom data set class
template <typename T>
struct PointCloud
{
std::vector<Point<T> > pts;
// Must return the number of data points
inline size_t kdtree_get_point_count() const { return pts.size(); }
// Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class:
inline T kdtree_distance(const T *p1, const size_t idx_p2,size_t /* size */) const
{
const T d0=p1[0]-pts[idx_p2].x;
const T d1=p1[1]-pts[idx_p2].y;
const T d2=p1[2]-pts[idx_p2].z;
return d0*d0+d1*d1+d2*d2;
}
// Returns the dim'th component of the idx'th point in the class:
// Since this is inlined and the "dim" argument is typically an immediate value, the
// "if/else's" are actually solved at compile time.
inline T kdtree_get_pt(const size_t idx, int dim) const
{
if (dim==0) return pts[idx].x;
else if (dim==1) return pts[idx].y;
else return pts[idx].z;
}
// Optional bounding-box computation: return false to default to a standard bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX>
bool kdtree_get_bbox(BBOX & /* bb */) const { return false; }
};
template <typename T>
void generateRandomPointCloud(PointCloud<T> &point, istream& is, int n)
{
T x, y, z;
for(int i=0; i < n; i++){
CGAL::read(is,x);
CGAL::read(is,y);
CGAL::read(is,z);
point.pts.push_back(Point<T>(x,y,z));
}
std::cout << "Read "<< point.pts.size() << " points\n";
}
template <typename num_t>
void kdtree_demo(int argc, char** argv)
{
PointCloud<num_t> cloud;
int n;
// Generate points:
std::ifstream input(argv[1], std::ios::in | std::ios::binary);
CGAL::IO::set_binary_mode(input);
// input >> n >> n; // dimension and # of points
CGAL::read(input,n);
CGAL::read(input,n);
generateRandomPointCloud(cloud, input, n);
std::vector<Point<double> > queries;
std::ifstream queries_stream(argv[2], std::ios::in | std::ios::binary);
CGAL::IO::set_binary_mode(queries_stream);
CGAL::read(queries_stream,n);
CGAL::read(queries_stream,n);
// queries_stream >> n >> n;
double x,y,z;
for(int i=0; i < n; i++){
CGAL::read(queries_stream,x);
CGAL::read(queries_stream,y);
CGAL::read(queries_stream,z);
queries.push_back(Point<double>(x,y,z));
}
int runs = (argc>3) ? boost::lexical_cast<int>(argv[3]) : 1;
std::cerr << "runs = " << runs <<std::endl;
int bucketsize = (argc>4) ? boost::lexical_cast<int>(argv[4]) : 10;
std::cerr << "bucketsize = " << bucketsize <<std::endl;
num_t query_pt[3] = { 0, 0, 0};
CGAL::Timer timer;
timer.start();
// construct a kd-tree index:
typedef KDTreeSingleIndexAdaptor<
L2_Simple_Adaptor<num_t, PointCloud<num_t> > ,
PointCloud<num_t>,
3 /* dim */
> my_kd_tree_t;
my_kd_tree_t index(3 /*dim*/, cloud, KDTreeSingleIndexAdaptorParams(bucketsize /* max leaf */) );
index.buildIndex();
timer.stop();
std::cout << "construction time: " << timer.time() << " sec" << std::endl;
std::cerr << "Tree statistics:" << std::endl;
std::cerr << "Number of items stored: "
<< index.items << std::endl;
std::cerr << "Number of nodes: "
<< index.internals << std::endl;
std::cerr << " Tree depth: " << index.depth() << std::endl;
// do a knn search
const size_t num_results = 10;
size_t ret_index[num_results];
num_t out_dist_sqr[num_results];
int size = queries.size();
std::cout << "start search" << std::endl;
bool dump = true;
double sum = 0;
for(int i=0;i<runs;++i){
nanoflann::KNNResultSet<num_t> resultSet(num_results);
for(int i = 0 ; i < size; i++){
query_pt[0] = queries[i].x;
query_pt[1] = queries[i].y;
query_pt[2] = queries[i].z;
resultSet.init(ret_index, out_dist_sqr );
timer.reset();
timer.start();
index.findNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10,0));
timer.stop();
for (size_t k=0; k<num_results; ++k){
if(dump)
std::cerr <<cloud.pts[ret_index[k]] << std::endl;
}
dump=false;
sum += timer.time();
}
}
std::cerr << index.count_items <<" items\n";
std::cerr << index.count_leafs <<" leaf\n";
std::cerr << index.count_internals <<" internals visited\n";
std::cerr<<std::endl << "total: " << sum << " sec\n";
if(runs>1){
std::cerr << "average: " << sum/runs << " sec\n";
}
std::cerr << "done\n";
}
int main(int argc, char** argv)
{
kdtree_demo<double>(argc, argv);
return 0;
}