cgal/Envelope_3/include/CGAL/Envelope_3/Envelope_pm_dcel.h

676 lines
16 KiB
C++

// Copyright (c) 2005 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Michal Meyerovitch <gorgymic@post.tau.ac.il>
// Baruch Zukerman <baruchzu@post.tau.ac.il>
// Ron Wein <wein@post.tau.ac.il>
// Efi Fogel <efif@post.tau.ac.il>
#ifndef CGAL_ENVELOPE_PM_DCEL_H
#define CGAL_ENVELOPE_PM_DCEL_H
#include <CGAL/Arr_default_dcel.h>
#include <CGAL/Envelope_3/Envelope_base.h>
namespace CGAL
{
namespace Envelope_3
{
template <class Data>
class Dcel_info
{
public:
typedef Dcel_info<Data> Self;
typedef std::list<Data> Data_container;
typedef typename Data_container::iterator Data_iterator;
typedef typename Data_container::const_iterator Data_const_iterator;
protected:
/*! data container */
Data_container m_data;
/*! Indicates that the data (surfaces) have been set already */
bool m_is_set;
// the decision that was made
Dac_decision m_decision;
public:
/*! Constructor */
Dcel_info() : m_is_set(false), m_decision(DAC_DECISION_NOT_SET)
{}
/*! \brief returns true iff data has been set already */
bool get_is_set() const { return m_is_set; }
/*! \brief resets the flag */
void set_is_set(bool flag) { m_is_set = flag; }
bool is_decision_set()
{
return (m_decision != DAC_DECISION_NOT_SET);
}
Dac_decision get_decision() const
{
return m_decision;
}
void set_decision(Comparison_result comp)
{
m_decision = enum_cast<Dac_decision>(comp);
}
void set_decision(Dac_decision dec)
{
m_decision = dec;
}
/*! User-friendly interface: */
size_t number_of_surfaces () const
{
return (m_data.size());
}
Data_const_iterator surfaces_begin () const
{
return (m_data.begin());
}
Data_const_iterator surfaces_end () const
{
return (m_data.end());
}
/*!
* Get the first Xy-monotone surface associated with the face.
* \pre number_of_surfaces() is not 0.
*/
const Data& surface() const
{
CGAL_precondition (m_data.size() > 0);
return (m_data.front());
}
/*!
* Get the number of data objects associated with the face.
*/
int number_of_data_objects() const
{
return (m_data.size());
}
/*!
* check if the data is set to be empty
*/
bool has_no_data() const
{
return (m_is_set && number_of_data_objects() == 0);
}
/*!
* Get the first data object associated with the face.
* \pre number_of_data_objects() is not 0.
*/
const Data& get_data() const
{
CGAL_precondition (m_data.size() > 0);
return (m_data.front());
}
/*!
* Get the data iterators (const version).
*/
Data_const_iterator begin_data() const
{
return (m_data.begin());
}
Data_const_iterator end_data() const
{
return (m_data.end());
}
/*!
* Get the data iterators (non-const version).
*/
Data_iterator begin_data()
{
return (m_data.begin());
}
Data_iterator end_data()
{
return (m_data.end());
}
/*!
* Set a data object to the face.
* \param data The data object to set.
*/
void set_data (const Data & data)
{
clear_data();
add_data(data);
}
/*!
* Set a range of data objects to the face.
* \param begin A begin iterator for the data range.
* \param end A past-the-end iterator for the data range.
*/
template <class InputIterator>
void set_data(const InputIterator & begin, const InputIterator & end)
{
clear_data();
add_data(begin, end);
}
/*!
* set the data to be empty.
*/
void set_no_data()
{
clear_data();
m_is_set = true;
}
/*!
* Add a data object to the face.
* \param data The additional data object.
*/
void add_data (const Data & data)
{
m_data.push_back(data);
m_is_set = true;
}
/*!
* Add a range of data objects to the face.
* \param begin A begin iterator for the data range.
* \param end A past-the-end iterator for the data range.
*/
template <class InputIterator>
void add_data (const InputIterator & begin, const InputIterator & end)
{
InputIterator it;
for (it = begin; it != end; it++)
m_data.push_back(*it);
m_is_set = true;
}
/*!
* Clear the data objects.
*/
void clear_data ()
{
m_data.clear();
m_is_set = false;
}
/*!
* Check if the set of data objects in the input range is equal to our
* set of data objects
*/
template <class InputIterator>
bool is_equal_data(const InputIterator & begin, const InputIterator & end)
const
{
if (!get_is_set())
return false;
// insert the input data objects into a set
std::set<Data> input_data(begin, end);
std::set<Data> my_data(begin_data(), end_data());
if (input_data.size() != my_data.size())
return false;
return (my_data == input_data);
}
template <class InputIterator>
bool has_equal_data(const InputIterator & begin, const InputIterator & end)
const
{
if (!get_is_set())
return false;
// insert the input data objects into a set
std::set<Data> input_data(begin, end);
std::set<Data> my_data(begin_data(), end_data());
std::list<Data> intersection;
std::set_intersection(my_data.begin(), my_data.end(),
input_data.begin(), input_data.end(),
std::back_inserter(intersection));
return (intersection.size() > 0);
}
protected:
/*! Place holder for the source of the overlay data */
Object m_aux_source[2];
public:
template<class HandleType>
void set_aux_source(unsigned int id, HandleType h)
{
CGAL_precondition(id < 2);
m_aux_source[id] = make_object(h);
}
void set_aux_source(unsigned int id, const Object& o)
{
CGAL_precondition(id < 2);
CGAL_precondition(!o.is_empty());
m_aux_source[id] = o;
}
const Object& get_aux_source(unsigned int id)
{
CGAL_precondition(id < 2);
CGAL_precondition (!m_aux_source[id].is_empty());
return m_aux_source[id];
}
/*! \brief returns true iff the point has been set already */
bool get_aux_is_set(unsigned int id) const
{
CGAL_precondition(id < 2);
return (!m_aux_source[id].is_empty());
}
};
/*! Extend the planar-map vertex */
template <class Point_2, class Data>
class Envelope_pm_vertex : public CGAL::Arr_vertex_base<Point_2>,
public Dcel_info<Data>
{
typedef CGAL::Arr_vertex_base<Point_2> Base_vertex;
typedef Dcel_info<Data> Base_info;
typedef Envelope_pm_vertex<Point_2, Data> Self;
protected:
// all flags are bits in this variable:
unsigned short flags;
// the flags indications:
enum Bit_pos
{
// for an isolated vertex only
IS_EQUAL = 0,
IS_EQUAL_AUX = 1,
HAS_EQUAL = 3,
HAS_EQUAL_AUX = 4,
// indicate if the edge was added in the decomposition process
// and is not part of the arrangement
IS_FAKE = 6,
// is this vertex an intersection vertex?
// used in the partial vd, to eliminate vertical edges from
// intersection points
IS_INTERSECTION = 7
};
public:
/*! Constructor */
Envelope_pm_vertex() : Dcel_info<Data>(), flags(0)
{}
/*void set_is_fake(bool b)
{
set_bit(IS_FAKE, b);
}
bool get_is_fake() const
{
return get_bit(IS_FAKE);
}*/
/* void set_is_intersection(bool b)
{
set_bit(IS_INTERSECTION, b);
}*/
/*bool get_is_intersection() const
{
return get_bit(IS_FAKE);
}*/
void set_is_equal_data_in_face(bool b)
{
set_bit(IS_EQUAL, b);
}
bool get_is_equal_data_in_face() const
{
return get_bit(IS_EQUAL);
}
void set_has_equal_data_in_face(bool b)
{
set_bit(HAS_EQUAL, b);
}
bool get_has_equal_data_in_face() const
{
return get_bit(HAS_EQUAL);
}
void set_is_equal_aux_data_in_face(unsigned int id, bool b)
{
CGAL_assertion(id < 2);
set_bit(IS_EQUAL_AUX+id, b);
}
bool get_is_equal_aux_data_in_face(unsigned int id) const
{
CGAL_assertion(id < 2);
return get_bit(IS_EQUAL_AUX+id);
}
void set_has_equal_aux_data_in_face(unsigned int id, bool b)
{
CGAL_assertion(id < 2);
set_bit(HAS_EQUAL_AUX+id, b);
}
bool get_has_equal_aux_data_in_face(unsigned int id) const
{
CGAL_assertion(id < 2);
return get_bit(HAS_EQUAL_AUX+id);
}
/*! Assign from another vertex.
* \param v the other vertex.
*/
virtual void assign(const Base_vertex & v)
{
Base_vertex::assign(v);
const Self & ex_v = static_cast<const Self&>(v);
this->Base_info::operator=(ex_v);
flags = ex_v.flags;
}
protected:
void set_bit(unsigned int ind, bool b)
{
if (b)
// set bit "ind" to 1:
flags |= (1 << ind);
else
// set bit "ind" to 0:
flags &= ~(1 << ind);
}
bool get_bit(unsigned int ind) const
{
// (1 << i) is bit i on, other bits off (start counting from 0)
unsigned int mask = 1 << ind;
return ((flags & mask) == mask);
}
};
/*! Extend the planar-map halfedge */
template <class X_monotone_curve_2, class Data>
class
Envelope_pm_halfedge : public CGAL::Arr_halfedge_base<X_monotone_curve_2>,
public Dcel_info<Data>
{
typedef CGAL::Arr_halfedge_base<X_monotone_curve_2> Base_halfedge;
typedef Dcel_info<Data> Base_info;
typedef Envelope_pm_halfedge<X_monotone_curve_2, Data> Self;
protected:
// all flags are bits in this variable:
unsigned int flags;
// flags indications
enum Bit_pos
{
// indications for the Envelope algorithm
// relation between halfedge and incident face
IS_EQUAL_FACE = 0,
IS_EQUAL_AUX_FACE = 1,
HAS_EQUAL_FACE = 3,
HAS_EQUAL_AUX_FACE = 4,
// relation between halfedge and target vertex
IS_EQUAL_TARGET = 6,
IS_EQUAL_AUX_TARGET = 7,
HAS_EQUAL_TARGET = 9,
HAS_EQUAL_AUX_TARGET = 10,
// relation between target vertex and incident face
HAS_EQUAL_F_T = 12,
HAS_EQUAL_AUX_F_T = 13,
// indicate if the edge was added in the decomposition process
// and is not part of the arrangement
IS_FAKE = 15
};
public:
Envelope_pm_halfedge() : Dcel_info<Data>(), flags(0)
{}
/* void set_is_fake(bool b)
{
set_bit(IS_FAKE, b);
}
bool get_is_fake() const
{
return get_bit(IS_FAKE);
}*/
void set_is_equal_data_in_face(bool b)
{
set_bit(IS_EQUAL_FACE, b);
}
bool get_is_equal_data_in_face() const
{
return get_bit(IS_EQUAL_FACE);
}
void set_has_equal_data_in_face(bool b)
{
set_bit(HAS_EQUAL_FACE, b);
}
bool get_has_equal_data_in_face() const
{
return get_bit(HAS_EQUAL_FACE);
}
void set_is_equal_aux_data_in_face(unsigned int id, bool b)
{
CGAL_assertion(id < 2);
set_bit(IS_EQUAL_AUX_FACE+id, b);
}
bool get_is_equal_aux_data_in_face(unsigned int id) const
{
CGAL_assertion(id < 2);
return get_bit(IS_EQUAL_AUX_FACE+id);
}
void set_has_equal_aux_data_in_face(unsigned int id, bool b)
{
CGAL_assertion(id < 2);
set_bit(HAS_EQUAL_AUX_FACE+id, b);
}
bool get_has_equal_aux_data_in_face(unsigned int id) const
{
CGAL_assertion(id < 2);
return get_bit(HAS_EQUAL_AUX_FACE+id);
}
void set_is_equal_data_in_target(bool b)
{
set_bit(IS_EQUAL_TARGET, b);
}
bool get_is_equal_data_in_target() const
{
return get_bit(IS_EQUAL_TARGET);
}
void set_has_equal_data_in_target(bool b)
{
set_bit(HAS_EQUAL_TARGET, b);
}
bool get_has_equal_data_in_target() const
{
return get_bit(HAS_EQUAL_TARGET);
}
void set_is_equal_aux_data_in_target(unsigned int id, bool b)
{
CGAL_assertion(id < 2);
set_bit(IS_EQUAL_AUX_TARGET+id, b);
}
bool get_is_equal_aux_data_in_target(unsigned int id) const
{
CGAL_assertion(id < 2);
return get_bit(IS_EQUAL_AUX_TARGET+id);
}
void set_has_equal_aux_data_in_target(unsigned int id, bool b)
{
CGAL_assertion(id < 2);
set_bit(HAS_EQUAL_AUX_TARGET+id, b);
}
bool get_has_equal_aux_data_in_target(unsigned int id) const
{
CGAL_assertion(id < 2);
return get_bit(HAS_EQUAL_AUX_TARGET+id);
}
// access to flags that contain relation between target and face
void set_has_equal_data_in_target_and_face(bool b)
{
set_bit(HAS_EQUAL_F_T, b);
}
bool get_has_equal_data_in_target_and_face() const
{
return get_bit(HAS_EQUAL_F_T);
}
void set_has_equal_aux_data_in_target_and_face(unsigned int id, bool b)
{
CGAL_assertion(id < 2);
set_bit(HAS_EQUAL_AUX_F_T+id, b);
}
bool get_has_equal_aux_data_in_target_and_face(unsigned int id) const
{
CGAL_assertion(id < 2);
return get_bit(HAS_EQUAL_AUX_F_T+id);
}
/*! Assign from another halfedge.
* \param h the other halfedge.
*/
virtual void assign(const Base_halfedge & h)
{
Base_halfedge::assign(h);
const Self & ex_h = static_cast<const Self&>(h);
this->Base_info::operator=(ex_h);
flags = ex_h.flags;
}
protected:
void set_bit(unsigned int ind, bool b)
{
if (b)
// set bit "ind" to 1:
flags |= (1 << ind);
else
// set bit "ind" to 0:
flags &= ~(1 << ind);
CGAL_assertion(get_bit(ind) == b);
}
bool get_bit(unsigned int ind) const
{
// (1 << i) is bit i on, other bits off (start counting from 0)
unsigned int mask = 1 << ind;
return ((flags & mask) == mask);
}
};
/*! Extend the planar-map face */
template <class Data>
class Envelope_pm_face : public CGAL::Arr_face_base,
public Dcel_info<Data>
{
typedef CGAL::Arr_face_base Base_face;
typedef Dcel_info<Data> Base_info;
typedef Envelope_pm_face<Data> Self;
public:
typedef std::list<Data> Data_container;
typedef typename Data_container::iterator Data_iterator;
typedef typename Data_container::const_iterator Data_const_iterator;
/*! Constructor */
Envelope_pm_face() : Dcel_info<Data>()
{}
/*! Assign from another face.
* \param f the other face.
*/
virtual void assign (const Base_face & f)
{
Base_face::assign(f);
const Self & ex_f = static_cast<const Self&>(f);
this->Base_info::operator=(ex_f);
}
};
/*! A new dcel builder with full Envelope features */
template <class Traits, class Data>
class Envelope_pm_dcel : public
CGAL::Arr_dcel_base<Envelope_pm_vertex<typename Traits::Point_2, Data>,
Envelope_pm_halfedge<typename Traits::X_monotone_curve_2,
Data>,
Envelope_pm_face<Data> >
{
public:
typedef Data Face_data;
typedef typename Envelope_pm_face<Data>::Data_iterator
Face_data_iterator;
typedef typename Envelope_pm_face<Data>::Data_const_iterator
Face_data_const_iterator;
typedef Data Edge_data;
typedef Face_data_iterator Edge_data_iterator;
typedef Face_data_const_iterator Edge_data_const_iterator;
typedef Data Vertex_data;
typedef Face_data_iterator Vertex_data_iterator;
typedef Face_data_const_iterator Vertex_data_const_iterator;
typedef Dcel_info<Data> Dcel_elem_with_data;
typedef Data Dcel_data;
typedef Face_data_iterator Dcel_data_iterator;
typedef Face_data_const_iterator Dcel_data_const_iterator;
/*! \struct
* An auxiliary structure for rebinding the DCEL with a new traits class.
*/
template<typename T>
struct rebind
{
typedef Envelope_pm_dcel<T, Face_data> other;
};
/*! Constructor */
Envelope_pm_dcel() {}
};
} // namespace Envelope_3
} // namespace CGAL
#endif