mirror of https://github.com/CGAL/cgal
202 lines
7.9 KiB
C++
202 lines
7.9 KiB
C++
// Copyright (c) 2006-2009 Inria Lorraine (France). All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; version 2.1 of the License.
|
|
// See the file LICENSE.LGPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
// Author: Luis Peñaranda <luis.penaranda@loria.fr>
|
|
|
|
#ifndef CGAL_RS_SOLVE_1_H
|
|
#define CGAL_RS_SOLVE_1_H
|
|
|
|
#include <CGAL/basic.h>
|
|
#include <CGAL/RS/basic.h>
|
|
#include <gmp.h>
|
|
#include <mpfr.h>
|
|
#include <mpfi.h>
|
|
#include <CGAL/RS/dyadic.h>
|
|
#include <CGAL/RS/solve_1.h>
|
|
#include <CGAL/RS/polynomial_1.h>
|
|
#include <CGAL/RS/algebraic_1.h>
|
|
#include <rs_exports.h>
|
|
|
|
namespace CGAL{
|
|
|
|
class RS_polynomial_1;
|
|
class Algebraic_1;
|
|
|
|
#define CGALRS_CSTR(S) ((char*)(S))
|
|
|
|
// initialize RS solver
|
|
inline void init_solver(){
|
|
static bool first=true;
|
|
if(first){
|
|
first=false;
|
|
//rs_version(stderr);
|
|
rs_init_rs();
|
|
rs_reset_all();
|
|
}
|
|
}
|
|
|
|
// reset RS memory
|
|
inline void reset_solver(){
|
|
rs_reset_all();
|
|
}
|
|
|
|
inline int affiche_sols_eqs(mpfi_ptr *x){
|
|
int ident_sols_eqs,nb_elts,ident_node,ident_vect,ident_elt,i;
|
|
ident_sols_eqs=rs_get_default_sols_eqs ();
|
|
nb_elts=rs_export_list_vect_ibfr_nb(ident_sols_eqs);
|
|
ident_node=rs_export_list_vect_ibfr_firstnode(ident_sols_eqs);
|
|
//x=(mpfi_ptr*)malloc(nb_elts*sizeof(mpfi_ptr));
|
|
for (i=0; i<nb_elts; ++i) {
|
|
ident_vect=rs_export_list_vect_ibfr_monnode(ident_node);
|
|
CGAL_assertion_msg(rs_export_dim_vect_ibfr(ident_vect)==1,
|
|
"the dimension of vector must be 1");
|
|
ident_elt=rs_export_elt_vect_ibfr(ident_vect,0);
|
|
x[i]=(mpfi_ptr)rs_export_ibfr_mpfi(ident_elt);
|
|
ident_node=rs_export_list_vect_ibfr_nextnode(ident_node);
|
|
}
|
|
return nb_elts;
|
|
}
|
|
|
|
inline void affiche_sols_constr(int nr,mpfi_ptr p){
|
|
int ident_sols_eqs,nb_elts,ident_node,ident_vect,nb,ident_elt;
|
|
ident_sols_eqs=rs_get_default_sols_ineqs();
|
|
nb_elts=rs_export_list_vect_ibfr_nb(ident_sols_eqs);
|
|
ident_node=rs_export_list_vect_ibfr_firstnode(ident_sols_eqs);
|
|
for(int i=0;i<nb_elts;++i){
|
|
ident_vect=rs_export_list_vect_ibfr_monnode(ident_node);
|
|
nb=rs_export_dim_vect_ibfr(ident_vect);
|
|
CGAL_assertion_msg((nb==1),
|
|
"the vector must contain one element");
|
|
ident_elt=rs_export_elt_vect_ibfr(ident_vect,0);
|
|
if(i==nr){
|
|
mpfi_set(p,(mpfi_ptr)rs_export_ibfr_mpfi(ident_elt));
|
|
//break;
|
|
}
|
|
ident_node=rs_export_list_vect_ibfr_nextnode(ident_node);
|
|
}
|
|
}
|
|
|
|
inline Sign affiche_signs_constr(const Algebraic_1 &a){
|
|
int ident_sols_eqs,nb_elts,ident_node,ident_vect, nb, ident_elt;
|
|
mpfi_t tmp;
|
|
mpfi_init(tmp);
|
|
ident_sols_eqs = rs_get_default_sols_ineqs ();
|
|
nb_elts = rs_export_list_vect_ibfr_nb (ident_sols_eqs);
|
|
ident_node = rs_export_list_vect_ibfr_firstnode (ident_sols_eqs);
|
|
for (int i=1; i<nb_elts+1; ++i) {
|
|
ident_vect = rs_export_list_vect_ibfr_monnode (ident_node);
|
|
nb = rs_export_dim_vect_ibfr (ident_vect);
|
|
CGAL_assertion_msg ((nb == 1),
|
|
"the vector must contain one element");
|
|
ident_elt = rs_export_elt_vect_ibfr (ident_vect, 0);
|
|
if (i == a.nr()+1) {
|
|
mpfi_set(tmp,(mpfi_ptr)rs_export_ibfr_mpfi(ident_elt));
|
|
break;
|
|
}
|
|
ident_node = rs_export_list_vect_ibfr_nextnode (ident_node);
|
|
}
|
|
//std::cerr << "\nreturned value: ";
|
|
//mpfi_out_str(stderr,10,0,tmp);
|
|
//std::cerr << std::endl;
|
|
// mpfi_is_zero(tmp) doesn't work. The reason is that MPFR_SIGN in
|
|
// the mpfi code returns 1 when applied to the left and right zeros.
|
|
// This is not surprising because zero is signed in IEEE 754, and MPFR
|
|
// adopts it. Nevertheless, mpfr_sgn returns 0, but mpfi doesn't use
|
|
// it to implement mpfi_is_zero.
|
|
// Here is the difference (from MPFR source code):
|
|
// define mpfr_sgn(_x) (mpfr_zero_p(_x) ? 0 : MPFR_SIGN(_x))
|
|
//
|
|
if(mpfr_zero_p(&(tmp->right))&&mpfr_zero_p(&(tmp->left)))
|
|
return ZERO;
|
|
// the same holds for mpfi_is_pos and mpfi_is_neg
|
|
if((mpfr_sgn(&(tmp->left))>=0)&&(mpfr_sgn(&(tmp->right)))>0)
|
|
return POSITIVE;
|
|
if((mpfr_sgn(&(tmp->left))<0)&&(mpfr_sgn(&(tmp->right))<=0))
|
|
return NEGATIVE;
|
|
// if we arrive here, it is because the signs of the endpoints are -
|
|
// and +, and (I think) RS guarantees that this never happens
|
|
CGAL_assertion_msg(false,"error in sign calculation");
|
|
return ZERO;
|
|
}
|
|
|
|
inline void create_rs_upoly (mpz_t *poly, const int deg, const int ident_pol) {
|
|
int ident_mon, ident_coeff, i;
|
|
rs_import_uppring(CGALRS_CSTR("T"));
|
|
for (i=0; i<=deg; ++i)
|
|
if (mpz_sgn (poly[i])) { // don't add if == 0
|
|
ident_mon = rs_export_new_mon_upp_bz ();
|
|
ident_coeff = rs_export_new_gmp ();
|
|
rs_import_bz_gmp
|
|
(ident_coeff, TO_RSPTR_IN (&(poly[i])));
|
|
rs_dset_mon_upp_bz (ident_mon, ident_coeff, i);
|
|
rs_dappend_list_mon_upp_bz (ident_pol, ident_mon);
|
|
}
|
|
}
|
|
|
|
inline void create_rs_uconstr (mpz_t ** list_constr,
|
|
const int * list_degs, const int ident_list) {
|
|
int ident_poly;
|
|
ident_poly = rs_export_new_list_mon_upp_bz ();
|
|
create_rs_upoly (*list_constr, *list_degs, ident_poly);
|
|
rs_dappend_list_sup_bz (ident_list, ident_poly);
|
|
}
|
|
|
|
// solve given the precision, returns the number of roots
|
|
inline int solve_1(
|
|
mpfi_ptr *x,
|
|
const RS_polynomial_1 &p1,
|
|
unsigned int prec=CGAL_RS_DEF_PREC){
|
|
rs_reset_all();
|
|
create_rs_upoly(p1.get_coefs(),p1.get_degree(),rs_get_default_up());
|
|
set_rs_precisol(prec);
|
|
set_rs_verbose(CGAL_RS_VERB);
|
|
rs_run_algo(CGALRS_CSTR("UISOLE"));
|
|
return affiche_sols_eqs(x);
|
|
}
|
|
|
|
// calculate the sign of a polynomial evaluated at the root of another
|
|
inline Sign sign_1_rs(
|
|
const RS_polynomial_1 &p1,
|
|
const Algebraic_1 &a,
|
|
unsigned int prec=CGAL_RS_MIN_PREC){
|
|
mpz_t **constr;
|
|
int *degs;
|
|
CGAL_assertion(a.is_consistent());
|
|
rs_reset_all ();
|
|
// tell RS to find the roots of this polynomial
|
|
create_rs_upoly (a.pol().get_coefs (), a.pol().get_degree (),
|
|
rs_get_default_up ());
|
|
// the constraint vector will have just one element
|
|
constr = (mpz_t**)malloc(sizeof(mpz_t*));
|
|
*constr = p1.get_coefs ();
|
|
degs = (int*)malloc(sizeof(int));
|
|
*degs = p1.get_degree ();
|
|
create_rs_uconstr (constr, degs, rs_get_default_ineqs_u ());
|
|
set_rs_precisol (prec);
|
|
set_rs_verbose (CGAL_RS_VERB);
|
|
rs_run_algo(CGALRS_CSTR("UISOLES"));
|
|
//Sign s=affiche_signs_constr(a);
|
|
//std::cout<<"sign of "<<p1<<" in the root of "<<a.pol()<<" = "<<s<<std::endl;
|
|
//return s;
|
|
return affiche_signs_constr (a);
|
|
}
|
|
|
|
} // namespace CGAL
|
|
|
|
#endif // CGAL_RS_SOLVE_1_H
|
|
|
|
// vim: tabstop=8: softtabstop=8: smarttab: shiftwidth=8: expandtab
|