cgal/Curved_kernel/doc_tex/Curved_kernel_ref/GeomFunctorsConstruct.tex

306 lines
9.5 KiB
TeX

\begin{ccRefFunctionObjectConcept}{CircularKernel::ConstructCircularArcPoint_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Root_for_circles_2_2 & r);}
{}
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Point_2 & p);}
{}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::ConstructLineArc_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{CircularKernel::Line_arc_2 operator()
(const CircularKernel::Line_2 &l,
const CircularKernel::Circular_arc_point_2 &p1,
const CircularKernel::Circular_arc_point_2 &p2);}
{Construct the line segment supported by \ccc{l}, whose source
is \ccc{p1} and whose target is \ccc{p2}.
\ccPrecond{\ccc{p1} and \ccc{p2} lie on \ccc{l}.}}
\ccMemberFunction{CircularKernel::Line_arc_2 operator()
(const CircularKernel::Line_2 &l,
const CircularKernel::Point_2 &p1,
const CircularKernel::Point_2 &p2);}
{Same.}
\ccMemberFunction{CircularKernel::Line_arc_2 operator()
(const CircularKernel::Segment_2 &s);}
{}
\ccMemberFunction{CircularKernel::Line_arc_2 operator()
(const CircularKernel::Line_2 &l,
const CircularKernel::Circle_2 &c1, int i1,
const CircularKernel::Circle_2 &c2, int i2);}
{Constructs the line segment whose supporting line is \ccc{l}, whose
source endpoint is the $i_1^{th}$ intersection of \ccc{l} with \ccc{c1},
and whose target endpoint is the $i_2^{th}$ intersection of \ccc{l}
and \ccc{c2}, where intersections are ordered lexicographically.
\ccPrecond{\ccc{l} intersects both \ccc{c1} and \ccc{c2}, and the arc
defined by the intersections has non-zero length.}}
\ccMemberFunction{CircularKernel::Line_arc_2 operator()
(const CircularKernel::Line_2 &l,
const CircularKernel::Line_2 &l1, int i1,
const CircularKernel::Line_2 &l2, int i2);}
{Same, for intersections defined by lines instead of circles.}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::ConstructCircularArc_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{CircularKernel::Circular_arc_2 operator()
(const CircularKernel::Circle_2 &c);}
{Constructs an arc from a full circle.}
\ccMemberFunction{CircularKernel::Circular_arc_2 operator()
(const CircularKernel::Circle_2 &c,
const CircularKernel::Circular_arc_point_2 &p1,
const CircularKernel::Circular_arc_point_2 &p2);}
{Construct the line segment supported by \ccc{c}, that is oriented
counterclockwise, whose source is \ccc{p1} and whose target is \ccc{p2}.
\ccPrecond{\ccc{p1} and \ccc{p2} lie on \ccc{c}.}}
\ccMemberFunction{CircularKernel::Circular_arc_2 operator()
(const CircularKernel::Circle_2 &c,
const CircularKernel::Point_2 &p1,
const CircularKernel::Point_2 &p2);}
{Same.}
\ccMemberFunction{CircularKernel::Circular_arc_2 operator()
(const CircularKernel::Circle_2 &c,
const CircularKernel::Circle_2 &c1, int i1,
const CircularKernel::Circle_2 &c2, int i2);}
{Constructs the unique circular arc that is oriented counterclockwise,
whose supporting circle is \ccc{c}, and whose source endpoint is the
intersection of \ccc{c} and \ccc{c1} with index $i_1$, and whose target
is the intersection of \ccc{c} and \ccc{c2} of index $i_2$, where
intersections are ordered lexicographically.
\ccPrecond{\ccc{c} intersects both \ccc{c1} and \ccc{c2}, and the arc
defined by the intersections has non-zero length.}}
\ccMemberFunction{CircularKernel::Circular_arc_2 operator()
(const CircularKernel::Circle_2 &c,
const CircularKernel::Line_2 &l1, int i1,
const CircularKernel::Line_2 &l2, int i2);}
{Same, for intersections defined by lines instead of circles.}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::ConstructCircularMinVertex_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Circular_arc_2 & c);}
{Constructs the $x$-minimal vertex of \ccc{c}.
\ccPrecond{The arc \ccc{c} is $x$-monotone.}}
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Line_arc_2 & l);}
{Same, for a line segment.}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::ConstructCircularMaxVertex_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Circular_arc_2 & c);}
{Constructs the $x$-maximal vertex of \ccc{c}.
\ccPrecond{The arc \ccc{c} is $x$-monotone.}}
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Line_arc_2 & l);}
{Same, for a line segment.}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::ConstructCircularSourceVertex_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Circular_arc_2 & c);}
{Constructs the source vertex of \ccc{c}.}
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Line_arc_2 & l);}
{Same, for a line segment.}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::ConstructCircularTargetVertex_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Circular_arc_2 & c);}
{Constructs the target vertex of \ccc{c}.}
\ccMemberFunction{CircularKernel::Circular_arc_point_2 operator()
(const CircularKernel::Line_arc_2 & l);}
{Same, for a line segment.}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::ConstructBbox_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{CGAL::Bbox_2 operator()
(const CircularKernel::Circular_arc_point_2 & p);}
{}
\ccMemberFunction{CGAL::Bbox_2 operator()
(const CircularKernel::Circular_arc_2 & c);}
{}
\ccMemberFunction{CGAL::Bbox_2 operator()
(const CircularKernel::Line_arc_2 & l);}
{}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::MakeXMonotone_2}
\ccDefinition
Splitting curves into monotone pieces.
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{template < class OutputIterator >
OutputIterator
operator()(const CircularKernel::Circular_arc_2 &ca, OutputIterator oit);}
{Splits the arc \ccc{ca} into monotone arcs that are returned through the
output iterator.}
\ccHasModels
\ccc{Circular_kernel_2::Make_x_monotone_2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::make_x_monotone}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::Intersect_2}
\ccDefinition
To compute intersections of objects.
\ccRefines
\ccc{Kernel::Intersect_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{template < class OutputIterator >
OutputIterator
operator()(const CircularKernel::Line_arc_2 &l, const Type &c,
OutputIterator points);}
{Copies in the output iterators the intersection points between the
two objects, sorted lexicographically. \ccc{points} iterates on
elements of type \ccc{std::pair<CircularKernel::Circular_arc_point_2,
int>}, where the integer is the multiplicity of the corresponding
intersection point between \ccc{l} and \ccc{c}. }
and
\ccMemberFunction{template < class OutputIterator >
OutputIterator
operator()(const Type &c, const CircularKernel::Line_arc_2 &l);}
{same}
where \ccc{Type} is either \ccc{CircularKernel::Circle_2} or
\ccc{CircularKernel::Circular_arc_2}.
\ccMemberFunction{template < class OutputIteratorPoints,
class OutputIteratorArcs >
std::pair< OutputIteratorPoints, OutputIteratorArcs >
operator()(const Type1 &obj1, const Type2 &obj2,
OutputIteratorPoints points, OutputIteratorArcs arcs);}
{Copies in the output iterators the intersections between the two
objects, sorted lexicographically. \ccc{points} iterates on elements
of type \ccc{std::pair<CircularKernel::Circular_arc_point_2, int>},
where the integer is the multiplicity of the corresponding
intersection point between \ccc{obj1} and \ccc{obj2}, and \ccc{arcs}
iterates on elements of type \ccc{CircularKernel::Circular_arc_2} %(or
%\ccc{CircularKernel::Circle_2} in the special case of two equal input circles)
that are arcs on which \ccc{obj1} and \ccc{obj2} overlap.}
where \ccc{Type1} and \ccc{Type2} can both be either
\ccc{CircularKernel::Circle_2} or
\ccc{CircularKernel::Circular_arc_2}.
\ccHasModels
\ccc{Circular_kernel_2::Intersect_2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::intersect}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::Split_2}
\ccDefinition
To split curves at a given point.
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMemberFunction{void operator()
(const CircularKernel::Circular_arc_2 &a,
const CircularKernel::Circular_arc_point_2 &p,
CircularKernel::Circular_arc_2 &a1,
CircularKernel::Circular_arc_2 &a2);}
{Splits arc $a$ at point $p$, which creates arcs $a1$ and $a2$.
\ccPrecond{$a$ is $x$-monotone, and $p$ lies on $a$.}}
\ccMemberFunction{void operator()
(const CircularKernel::Line_arc_2 &l,
const CircularKernel::Circular_arc_point_2 &p,
CircularKernel::Line_arc_2 &l1, CircularKernel::Line_arc_2 &l2);}
{Same for a line arc.}
\ccHasModels
\ccc{Circular_kernel_2::Split_2}
\ccSeeAlso
\ccRefIdfierPage{CGAL::split}
\end{ccRefFunctionObjectConcept}