mirror of https://github.com/CGAL/cgal
91 lines
3.1 KiB
TeX
91 lines
3.1 KiB
TeX
\begin{ccRefClass} {Ray_3<Kernel>}
|
|
|
|
\ccDefinition
|
|
An object \ccStyle{r} of the data type \ccRefName\ is a directed
|
|
straight ray in the three-dimensional Euclidean space $\E^3$. It starts
|
|
in a point called the {\em source} of \ccStyle{r} and it goes to infinity.
|
|
|
|
|
|
\ccCreation
|
|
\ccCreationVariable{r}
|
|
|
|
|
|
\ccHidden \ccConstructor{Ray_3();}
|
|
{introduces an uninitialized variable \ccVar.}
|
|
|
|
\ccHidden \ccConstructor{Ray_3(const Ray_3<Kernel> &s);}
|
|
{copy constructor.}
|
|
|
|
\ccConstructor{Ray_3(const Point_3<Kernel> &p, const Point_3<Kernel> &q);}
|
|
{introduces a ray \ccVar\
|
|
with source $p$ and passing through point $q$.}
|
|
|
|
\ccConstructor{Ray_3(const Point_3<Kernel> &p, const Direction_3<Kernel> &d)}
|
|
{introduces a ray \ccVar\ with source $p$ and with
|
|
direction $d$.}
|
|
|
|
\ccConstructor{Ray_3(const Point_3<Kernel> &p, const Vector_3<Kernel> &v)}
|
|
{introduces a ray \ccVar\ with source $p$ and with
|
|
a direction given by $v$.}
|
|
|
|
\ccConstructor{Ray_3(const Point_3<Kernel> &p, const Line_3<Kernel> &l)}
|
|
{introduces a ray \ccVar\ starting at source $p$ with
|
|
the same direction as $l$.}
|
|
|
|
\ccOperations
|
|
|
|
\ccHidden \ccMethod{Ray_3<Kernel> &operator=(const Ray_3<Kernel> &s);}
|
|
{Assignment.}
|
|
|
|
\ccMethod{bool operator==(const Ray_3<Kernel> &h) const;}
|
|
{Test for equality: two rays are equal, iff they have the same
|
|
source and the same direction.}
|
|
|
|
\ccMethod{bool operator!=(const Ray_3<Kernel> &h) const;}
|
|
{Test for inequality.}
|
|
|
|
|
|
|
|
\ccMethod{Point_3<Kernel> source() const;}
|
|
{returns the source of \ccVar}
|
|
|
|
\ccMethod{Point_3<Kernel> point(int i) const;}
|
|
{returns a point on \ccVar. \ccStyle{point(0)} is the source.
|
|
\ccStyle{point(i)}, with $i>0$, is different from the
|
|
source. \ccPrecond $i \geq 0$.}
|
|
|
|
\ccMethod{Direction_3<Kernel> direction() const;}
|
|
{returns the direction of \ccVar.}
|
|
|
|
\ccMethod{Vector_3<Kernel> to_vector() const;}
|
|
{returns a vector giving the direction of \ccVar.}
|
|
|
|
\ccMethod{Line_3<Kernel> supporting_line() const;}
|
|
{returns the line supporting \ccVar\ which has the same direction.}
|
|
|
|
\ccMethod{Ray_3<Kernel> opposite() const;}
|
|
{returns the ray with the same source and the opposite direction.}
|
|
|
|
\ccMethod{bool is_degenerate() const;}
|
|
{ray \ccVar\ is degenerate, if the source and the second defining
|
|
point fall together (that is if the direction is degenerate).}
|
|
|
|
|
|
\ccMethod{bool has_on(const Point_3<Kernel> &p) const;}
|
|
{A point is on \ccVar, iff it is equal to the source
|
|
of \ccVar, or if it is in the interior of \ccVar.}
|
|
%
|
|
% \ccMethod{bool collinear_has_on(const Point_3<Kernel> &p) const;}
|
|
% {checks if point $p$ is on ray \ccVar. This function is faster
|
|
% than function \ccStyle{has_on()}.
|
|
% \ccPrecond{$p$ is collinear to \ccVar.}}
|
|
%
|
|
\ccMethod{Ray_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;}
|
|
{returns the ray obtained by applying $t$ on the source
|
|
and on the direction of \ccVar.}
|
|
|
|
\ccSeeAlso
|
|
\ccRefConceptPage{Kernel::Ray_3}
|
|
|
|
\end{ccRefClass}
|