cgal/Parameterization/doc_tex/Parameterization_ref/Barycentric_mapping_paramet...

166 lines
5.6 KiB
TeX

% +------------------------------------------------------------------------+
% | Reference manual page: Barycentric_mapping_parameterizer_3.tex
% +------------------------------------------------------------------------+
% | 23.08.2005 Laurent Saboret, Pierre Alliez
% | Package: Parameterization
% |
\RCSdef{\RCSBarycentricmappingparameterizerRev}{$Id$}
\RCSdefDate{\RCSBarycentricmappingparameterizerDate}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Barycentric_mapping_parameterizer_3} %% add template arg's if necessary
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
\ccDefinition
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccDefinition)
The class Barycentric\_mapping\_parameterizer\_3 implements Tutte Barycentric Mapping algorithm \cite{t-hdg-63}. This algorithm is also called {\em Tutte Uniform Weights} by other authors.
1 to 1 mapping is guaranteed if the surface's border is mapped to a convex polygon.
As all parameterization algorithms of the package, this class is usually called via the global function parameterize().
This class is a Strategy \cite{cgal:ghjv-dpero-95} called by the main parameterization algorithm Fixed\_border\_parameterizer\_3::parameterize(). Barycentric\_mapping\_parameterizer\_3:\begin{itemize}
\item provides default BorderParameterizer\_3 and SparseLinearAlgebraTraits\_d template parameters that make sense.\item implements compute\_w\_ij() to compute w\_ij = (i,j) coefficient of matrix A for j neighbor vertex of i based on Tutte Barycentric Mapping method.\item implements an optimized version of is\_one\_to\_one\_mapping().\end{itemize}
%END-AUTO(\ccDefinition)
\ccInclude{CGAL/Barycentric_mapping_parameterizer_3.h}
\ccIsModel
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccIsModel)
Model of the ParameterizerTraits\_3 concept.
%END-AUTO(\ccIsModel)
\ccParameters
The full template declaration is:
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccParameters)
template$<$ \\
class ParameterizationMesh\_3, \\
class BorderParameterizer\_3 = Circular\_border\_arc\_length\_parameterizer\_3$<$ParameterizationMesh\_3$>$, \\
class SparseLinearAlgebraTraits\_d = OpenNL::DefaultLinearSolverTraits$<$typename ParameterizationMesh\_3::NT$>$$>$ \\
class Barycentric\_mapping\_parameterizer\_3;
%END-AUTO(\ccParameters)
\ccTypes
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccTypes)
%END-AUTO(\ccTypes)
\ccCreation
\ccCreationVariable{param} %% variable name used by \ccMethod below
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccCreation)
\ccConstructor{Barycentric_mapping_parameterizer_3 (Border_param border_param = Border_param(), Sparse_LA sparse_la = Sparse_LA());}
{
Constructor.
}
\ccGlue
\begin{description}
\item[Parameters: ]
\begin{description}
\item[border\_param]Object that maps the surface's border to 2D space. \item[sparse\_la]Traits object to access a sparse linear system. \end{description}
\end{description}
\ccGlue
%END-AUTO(\ccCreation)
\ccOperations
% The section below is automatically generated. Do not edit!
%START-AUTO(\ccOperations)
\ccMethod{virtual NT compute_w_ij (const Adaptor & mesh, Vertex_const_handle main_vertex_v_i, Vertex_around_vertex_const_circulator neighbor_vertex_v_j);}
{
Compute w\_ij = (i,j) coefficient of matrix A for j neighbor vertex of i.
Tutte Barycentric Mapping algorithm is the most simple one: w\_ij = 1 for j neighbor vertex of i.
}
\ccGlue
\ccMethod{virtual bool is_one_to_one_mapping (const Adaptor & mesh, const Matrix & A, const Vector & Bu, const Vector & Bv);}
{
Check if 3D -$>$ 2D mapping is 1 to 1.
Theorem: 1 to 1 mapping is guaranteed if all w\_ij coefficients are $>$ 0 (for j vertex neighbor of i) and if the surface border is mapped onto a 2D convex polygon. All w\_ij coefficients = 1 (for j vertex neighbor of i), thus mapping is guaranteed if the surface border is mapped onto a 2D convex polygon.
}
\ccGlue
%END-AUTO(\ccOperations)
\ccSeeAlso
\ccRefIdfierPage{CGAL::Parameterizer_traits_3} \\
\ccRefIdfierPage{CGAL::Fixed_border_parameterizer_3} \\
\ccRefIdfierPage{CGAL::Discrete_authalic_parameterizer_3} \\
\ccRefIdfierPage{CGAL::Discrete_conformal_map_parameterizer_3} \\
\ccRefIdfierPage{CGAL::LSCM_parameterizer_3} \\
\ccRefIdfierPage{CGAL::Mean_value_coordinates_parameterizer_3} \\
\ccExample
\begin{ccExampleCode}
// CGAL kernel
typedef CGAL::Cartesian<double> Kernel;
// Mesh true type and parameterization adaptor
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef CGAL::Parameterization_polyhedron_adaptor_3<Polyhedron>
Parameterization_polyhedron_adaptor;
// Tutte barycentric mapping
typedef CGAL::Barycentric_mapping_parameterizer_3<Parameterization_polyhedron_adaptor>
Parameterizer;
int main(int argc,char * argv[])
{
Polyhedron mesh;
...
// The parameterization package needs an adaptor to handle Polyhedron_3 meshes
// The mesh must be a topological disk
Parameterization_polyhedron_adaptor mesh_adaptor(&mesh);
Parameterizer::Error_code err = CGAL::parameterize(&mesh_adaptor, Parameterizer());
...
}
\end{ccExampleCode}
\end{ccRefClass}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
% EOF
% +------------------------------------------------------------------------+