cgal/Packages/Kernel_23/doc_tex/kernel/extensible_kernel.tex

295 lines
7.3 KiB
TeX

\chapter{Extensible Kernel}
\section{Introduction}
The following manual sections describe how users can plug user defined
geometric classes in existing \cgal\ kernels.
\section{The Anatomy of a Kernel}
\subsection{Introduction}
\cgal\ defines the concept of a geometry kernel. Such a kernel provides types,
construction objects and generalized predicates. Most implementations
of Computational Geometry algorithms and data structures in the basic
library of \cgal\ were done in a way that classes or functions can be
parametrized with a geometric traits class.
In most cases this geometric traits class must be a model of the \cgal\ geometry
kernel concept (but there are some exceptions).
\subsection{An Example}
Assume you have the following point class, where the coordinates are
stored in an array of \ccc{doubles}, where we have another data member
\ccc{color}, which shows up in the constructor.
\ccHtmlLinksOff
\begin{ccExampleCode}
class MyPointC2 {
private:
double vec[2];
int col;
public:
MyPointC2()
: col(0)
{
*vec = 0;
*(vec+1) = 0;
}
MyPointC2(const double x, const double y, int c)
: col(c)
{
*vec = x;
*(vec+1) = y;
}
const double& x() const { return *vec; }
const double& y() const { return *(vec+1); }
double & x() { return *vec; }
double& y() { return *(vec+1); }
int color() const { return col; }
int& color() { return col; }
bool operator==(const MyPointC2 &p) const
{
return ( *vec == *(p.vec) ) && ( *(vec+1) == *(p.vec + 1) && ( col == p.col) );
}
bool operator!=(const MyPointC2 &p) const
{
return !(*this == p);
}
};
\end{ccExampleCode}
\ccHtmlLinksOn
As said earlier the class is pretty minimalistic, for
example it has no \ccc{bbox()} method. One
might assume that a basic library algorithm which computes
a bounding box (e.g, to compute the bounding box of a polygon),
will not compile. Luckily it will, because it does not
use of member functions of geometric objects, but it makes
use of the functor \ccc{Kernel::Construct_bbox_2}.
To make the right thing happen with \ccc{MyPointC2} we
have to provide the following functor.
\ccHtmlLinksOff
\begin{ccExampleCode}
template <class ConstructBbox_2>
class MyConstruct_bbox_2 : public ConstructBbox_2 {
public:
CGAL::Bbox_2 operator()(const typename MyPointC2& p) const {
return CGAL::Bbox_2(p.x(), p.y(), p.x(), p.y());
}
};
\end{ccExampleCode}
\ccHtmlLinksOn
Things are similar for random access to the \ccHtmlNoLinksFrom{Cartesian}
coordinates of a point. As the coordinates are stored
in an array of \ccc{doubles} we can use \ccc{double*} as
random access iterator.
\ccHtmlLinksOff
\begin{ccExampleCode}
class MyConstruct_coord_iterator {
public:
const double* operator()(const MyPointC2& p)
{
return &p.x();
}
const double* operator()(const MyPointC2& p, int)
{
const double* pyptr = &p.y();
pyptr++;
return pyptr;
}
};
\end{ccExampleCode}
\ccHtmlLinksOn
The last functor we have to provide is the one which constructs
points. That is you are not forced to add the constructor
with the \ccc{Origin} as parameter to your class, nor the constructor with
homogeneous coordinates, and at the same time you can
pass the additional color argument to your point constructor.
The functor is a kind of glue layer between the \cgal\ algorithms
and your class.
\ccHtmlLinksOff
\begin{ccExampleCode}
template <typename K>
class MyConstruct_point_2
{
typedef typename K::RT RT;
typedef typename K::Point_2 Point_2;
public:
typedef Point_2 result_type;
typedef CGAL::Arity_tag< 1 > Arity;
Point_2
operator()() const
{ return Point_2(); }
Point_2
operator()(CGAL::Origin o) const
{ return Point_2(0,0, 0); }
Point_2
operator()(const RT& x, const RT& y) const
{ return Point_2(x, y, 0); }
// We need this one, as such a functor is in the Filtered_kernel
Point_2
operator()(const RT& x, const RT& y, const RT& w) const
{
if(w != 1){
return Point_2(x/w, y/w, 0);
} else {
return Point_2(x,y, 0);
}
}
};
\end{ccExampleCode}
\ccHtmlLinksOn
Now we are ready to put the puzzle together. To do so we
scavenge code. We won't explain it in detail, but you see
that there are \ccc{typedefs} to the new point class and
the functors. All the other types are inherited.
\ccHtmlLinksOff
\begin{ccExampleCode}
#ifndef MYKERNEL_H
#define MYKERNEL_H
#include <CGAL/Cartesian/Cartesian_base.h>
#include <CGAL/Simple_Handle_for.h>
#include "MyPointC2.h"
// Taken from include/CGAL/Cartesian/Cartesian_base.h
template < typename K_ >
struct MyCartesian_base : public CGAL::Cartesian_base< K_ >
{
typedef K_ Kernel;
typedef CGAL::Cartesian_base< K_ > Base;
typedef MyPointC2 Point_2;
typedef MyConstruct_point_2<Kernel> Construct_point_2;
typedef const double* Cartesian_const_iterator_2;
typedef MyConstruct_coord_iterator Construct_cartesian_const_iterator_2;
typedef MyConstruct_bbox_2<typename Base::Construct_bbox_2>
Construct_bbox_2;
};
// Taken from include/CGAL/Cartesian.h
template < typename FT_, typename Kernel >
struct MyCartesian_base_no_ref_count
: public MyCartesian_base< Kernel >
{
typedef FT_ RT;
typedef FT_ FT;
// The mecanism that allows to specify reference-counting or not.
template < typename T >
struct Handle { typedef CGAL::Simple_Handle_for<T> type; };
template < typename Kernel2 >
struct Base { typedef MyCartesian_base_no_ref_count<FT_, Kernel2> Type; };
static FT make_FT(const RT & num, const RT& denom) { return num/denom;}
static FT make_FT(const RT & num) { return num;}
static RT FT_numerator(const FT &r) { return r;}
static RT FT_denominator(const FT &) { return RT(1);}
};
template < typename FT_ >
struct MyKernel
: public MyCartesian_base_no_ref_count<FT_, MyKernel<FT_> >
{
public:
typedef MyCartesian_base_no_ref_count<FT_, MyKernel<FT_> > Kernel_base;
};
CGAL_ITERATOR_TRAITS_POINTER_SPEC_TEMPLATE(MyKernel)
#endif // MYKERNEL_H
\end{ccExampleCode}
\ccHtmlLinksOn
Finally, we give an example how this new kernel can be used.
\ccHtmlLinksOff
\begin{ccExampleCode}
#include <CGAL/basic.h>
#include <CGAL/convex_hull_2.h>
#include ``./MyKernel.h''
#include <list>
typedef MyKernel<double> MyK;
typedef CGAL::Filtered_kernel<MyK> K;
typedef K::Point_2 Point_2;
int main()
{
std::list<Point_2> input;
Point_2 act;
input.push_back(act);
std::list<Point_2> output;
K traits;
CGAL::convex_hull_2(input.begin(), input.end(),
std::back_inserter(output), traits);
return 0;
}
\end{ccExampleCode}
\ccHtmlLinksOn
\subsection{Limitations}
The point class must have member functions \ccc{x()} and \ccc{y()}
(and \ccc{z()} for the 3d point). We work on that.
Global functions operating on, for example
\ccc{CGAL::Orientation(CGAL::Point_2<K>, CGAL::Point_2<K>,
CGAL::Point_2<K>)} will not work. Instead you have to
use the functor \ccc{MyKernel<double>::Orientation_2}.
Rewriting the code is however pretty easy, as you can give
the functor object the same name as the global function.