cgal/Triangulation_on_hyperbolic.../include/CGAL/Complex_number.h

176 lines
3.8 KiB
C++

// Copyright (c) 2024
// INRIA Nancy (France), and Université Gustave Eiffel Marne-la-Vallée (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Vincent Despré, Loïc Dubois, Marc Pouget, Monique Teillaud
#ifndef CGAL_COMPLEX_NUMBER_H
#define CGAL_COMPLEX_NUMBER_H
#include <fstream>
#include <sstream>
#include <utility>
namespace CGAL {
/*
Templated by a field FT. Represents a complex number over FT.
*/
template <class FT>
class Complex_number
{
typedef Complex_number<FT> Self;
FT real_, imag_;
public:
Complex_number(const FT& real_part)
: real_(real_part),
imag_(0)
{}
Complex_number(const FT& real_part, const FT& imaginary_part)
: real_(real_part),
imag_(imaginary_part)
{}
Complex_number()
: Complex_number(FT(0), FT(0))
{}
template<class U,class V>
Complex_number(U&& real_part, V&& imaginary_part)
: real_(std::forward<U>(real_part)),
imag_(std::forward<V>(imaginary_part))
{}
void real(const FT& real_part) {
real_ = real_part;
}
void imag(const FT& imaginary_part) {
imag_ = imaginary_part;
}
FT real() const {
return real_;
}
FT imag() const {
return imag_;
}
Self& operator+=(const Self& other);
Self& operator-=(const Self& other);
Self& operator*=(const Self& other);
Self& operator/=(const Self& other);
// These member versions are not working ?
/* Self operator+(const Self& z) const; */
/* Self operator-(const Self& z) const; */
// Hidden friends
friend Self operator+(const Self& z) {
return z;
}
friend Self operator-(const Self& z) {
return Self(-z.real_,-z.imag_);
}
friend bool operator==(const Self& z1, const Self& z2) {
return (z1.real_==z2.real_ && z1.imag_==z2.imag_);
}
friend bool operator!=(const Self& z1, const Self& z2) {
return !operator==(z1, z2);
}
friend Self operator+(const Self& z1, const Self& z2) {
return Self(z1.real_+z2.real_, z1.imag_+z2.imag_);
}
friend Self operator-(const Self& z1, const Self& z2) {
return Self(z1.real_-z2.real_, z1.imag_-z2.imag_);
}
friend Self operator*(const Self& z1, const Self& z2) {
return Self(z1.real_*z2.real_-z1.imag_*z2.imag_, z1.real_*z2.imag_+z1.imag_*z2.real_);
}
friend Self operator/(const Self& z1, const Self& z2) {
FT m2 = norm(z2);
return Self(z1.real_/m2, z1.imag_/m2)*conj(z2);
}
friend std::ostream& operator<<(std::ostream& s, const Self& z) {
s << z.real_ << std::endl << z.imag_ << std::endl;
return s;
}
friend void operator>>(std::istream& s, Self& z) {
FT ft;
s >> ft;
z.real(ft);
s >> ft;
z.imag(ft);
}
};
////////////////////////////////////////////////////////////////////////////////
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator+=(const Complex_number<FT>& other)
{
real_ += other.real();
imag_ += other.imag();
return *this;
}
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator-=(const Complex_number<FT>& other)
{
real_ -= other.real();
imag_ -= other.imag();
return *this;
}
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator*=(const Complex_number<FT>& other)
{
real_ = real_*other.real() - imag_*other.imag();
imag_ = real_*other.imag() + imag_*other.real();
return *this;
}
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator/=(const Complex_number<FT>& other)
{
FT m2 = norm(other);
real_ /= m2;
imag_ /= m2;
this *= conj(other);
return *this;
}
template<class FT>
FT norm(const Complex_number<FT>& z)
{
return z.real()*z.real() + z.imag()*z.imag();
}
template<class FT>
Complex_number<FT> conj(const Complex_number<FT>& z)
{
return Complex_number<FT>(z.real(), -z.imag());
}
} // namespace CGAL
#endif // CGAL_COMPLEX_NUMBER_H