mirror of https://github.com/CGAL/cgal
175 lines
3.9 KiB
C++
175 lines
3.9 KiB
C++
// Copyright (c) 2024
|
|
// INRIA Nancy (France), and Université Gustave Eiffel Marne-la-Vallée (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org)
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s) : Vincent Despré, Loïc Dubois, Marc Pouget, Monique Teillaud
|
|
|
|
#ifndef CGAL_COMPLEX_NUMBER_H
|
|
#define CGAL_COMPLEX_NUMBER_H
|
|
|
|
#include <fstream>
|
|
#include <sstream>
|
|
#include <utility>
|
|
|
|
namespace CGAL {
|
|
|
|
/*
|
|
Templated by a field FT. Represents a complex number over FT.
|
|
*/
|
|
template <class FT>
|
|
class Complex_number
|
|
{
|
|
typedef Complex_number<FT> _Self;
|
|
|
|
FT _real, _imag;
|
|
|
|
public:
|
|
Complex_number(const FT& real_part)
|
|
: _real(real_part)
|
|
{}
|
|
|
|
Complex_number(const FT& real_part, const FT& imaginary_part)
|
|
: _real(real_part),
|
|
_imag(imaginary_part)
|
|
{}
|
|
|
|
Complex_number()
|
|
: Complex_number(FT(0), FT(0))
|
|
{}
|
|
|
|
template<class U,class V>
|
|
Complex_number(U&& real_part, V&& imaginary_part)
|
|
: _real(std::forward<U>(real_part)),
|
|
_imag(std::forward<V>(imaginary_part))
|
|
{}
|
|
|
|
void real(const FT& real_part) {
|
|
_real = real_part;
|
|
}
|
|
|
|
void imag(const FT& imaginary_part) {
|
|
_imag = imaginary_part;
|
|
}
|
|
|
|
FT real() const {
|
|
return _real;
|
|
}
|
|
|
|
FT imag() const {
|
|
return _imag;
|
|
}
|
|
|
|
_Self& operator+=(const _Self& other);
|
|
_Self& operator-=(const _Self& other);
|
|
_Self& operator*=(const _Self& other);
|
|
_Self& operator/=(const _Self& other);
|
|
|
|
// These member versions are not working ?
|
|
/* _Self operator+(const _Self& z) const; */
|
|
/* _Self operator-(const _Self& z) const; */
|
|
|
|
// Hidden friends
|
|
friend _Self operator+(const _Self& z) {
|
|
return z;
|
|
}
|
|
|
|
friend _Self operator-(const _Self& z) {
|
|
return _Self(-z._real,-z._imag);
|
|
}
|
|
|
|
friend bool operator==(const _Self& z1, const _Self& z2) {
|
|
return (z1._real==z2._real && z1._imag==z2._imag);
|
|
}
|
|
|
|
friend bool operator!=(const _Self& z1, const _Self& z2) {
|
|
return !operator==(z1, z2);
|
|
}
|
|
|
|
friend _Self operator+(const _Self& z1, const _Self& z2) {
|
|
return _Self(z1._real+z2._real, z1._imag+z2._imag);
|
|
}
|
|
|
|
friend _Self operator-(const _Self& z1, const _Self& z2) {
|
|
return _Self(z1._real-z2._real, z1._imag-z2._imag);
|
|
}
|
|
|
|
friend _Self operator*(const _Self& z1, const _Self& z2) {
|
|
return _Self(z1._real*z2._real-z1._imag*z2._imag, z1._real*z2._imag+z1._imag*z2._real);
|
|
}
|
|
|
|
friend _Self operator/(const _Self& z1, const _Self& z2) {
|
|
FT m2 = norm(z2);
|
|
return _Self(z1._real/m2, z1._imag/m2)*conj(z2);
|
|
}
|
|
|
|
friend std::ostream& operator<<(std::ostream& s, const _Self& z) {
|
|
s << z._real << std::endl << z._imag << std::endl;
|
|
return s;
|
|
}
|
|
|
|
friend void operator>>(std::istream& s, _Self& z) {
|
|
FT ft;
|
|
s >> ft;
|
|
z.real(ft);
|
|
s >> ft;
|
|
z.imag(ft);
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template<class FT>
|
|
Complex_number<FT>& Complex_number<FT>::operator+=(const Complex_number<FT>& other)
|
|
{
|
|
_real += other.real();
|
|
_imag += other.imag();
|
|
return *this;
|
|
}
|
|
|
|
template<class FT>
|
|
Complex_number<FT>& Complex_number<FT>::operator-=(const Complex_number<FT>& other)
|
|
{
|
|
_real -= other.real();
|
|
_imag -= other.imag();
|
|
return *this;
|
|
}
|
|
|
|
template<class FT>
|
|
Complex_number<FT>& Complex_number<FT>::operator*=(const Complex_number<FT>& other)
|
|
{
|
|
_real = _real*other.real() - _imag*other.imag();
|
|
_imag = _real*other.imag() + _imag*other.real();
|
|
return *this;
|
|
}
|
|
|
|
template<class FT>
|
|
Complex_number<FT>& Complex_number<FT>::operator/=(const Complex_number<FT>& other)
|
|
{
|
|
FT m2 = norm(other);
|
|
_real /= m2;
|
|
_imag /= m2;
|
|
this *= conj(other);
|
|
return *this;
|
|
}
|
|
|
|
template<class FT>
|
|
FT norm(const Complex_number<FT>& z)
|
|
{
|
|
return z.real()*z.real() + z.imag()*z.imag();
|
|
}
|
|
|
|
template<class FT>
|
|
Complex_number<FT> conj(const Complex_number<FT>& z)
|
|
{
|
|
return Complex_number<FT>(z.real(), -z.imag());
|
|
}
|
|
|
|
} // namespace CGAL
|
|
|
|
#endif // CGAL_COMPLEX_NUMBER_H
|