cgal/QP_solver/doc_tex/QP_solver_ref/QuadraticProgramInterface.tex

136 lines
4.9 KiB
TeX

\begin{ccRefConcept}{QuadraticProgramInterface}
\ccDefinition
A model of \ccRefName\ describes a convex quadratic program of the form
%%
\begin{eqnarray*}
\mbox{(QP)}& \mbox{minimize} & x^{T}Dx+c^{T}x+c_0 \\
&\mbox{subject to} & Ax\qprel b, \\
& & l \leq x \leq u
\end{eqnarray*}
%%
in $n$ real variables $x=(x_0,\ldots,x_{n-1})$.
Here,
\begin{itemize}
\item $A$ is an $m\times n$ matrix (the constraint matrix),
\item $b$ is an $m$-dimensional vector (the right-hand side),
\item $\qprel$ is an $m$-dimensional vector of relations
from $\{\leq, =, \geq\}$,
\item $l$ is an $n$-dimensional vector of lower
bounds for $x$,
\item $u$ is an $n$-dimensional vector of upper bounds for
$x$,
\item $D$ is a symmetric positive-semidefinite $n\times n$ matrix (the
quadratic objective function),
\item $c$ is an $n$-dimensional vector (the linear objective
function), and
\item $c_0$ is a constant.
\end{itemize}
\ccRefines
\ccc{NonnegativeQuadraticProgramInterface}\\
\ccc{LinearProgramInterface}\\
\ccc{NonnegativeLinearProgramInterface}
\ccHasModels
\ccc{CGAL::Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>}\\
\ccc{CGAL::Quadratic_program_from_pointers<NT>}\\
\ccc{CGAL::Quadratic_program_from_mps<NT>}
\ccTypes
\ccNestedType{A_iterator}{A random access iterator type for
the \emph{columns} of the constraint matrix $A$.}
\ccNestedType{B_iterator}{A random access iterator type for
the entries of the right-hand side $b$.}
\ccNestedType{R_iterator}{A random access iterator type for the
relations $\qprel$. The value type of \ccc{R_iterator} is
\ccc{CGAL::Comparison_result}.}
\ccNestedType{FL_iterator}{A random access iterator type for the
existence (or finiteness) of the lower bounds $l_j, j=0,\ldots,n-1$.
The value type of \ccc{FL_iterator} is \ccc{bool}.}
\ccNestedType{L_iterator}{A random acess iterator type for the entries
of the lower bound vector $l$.}
\ccNestedType{UL_iterator}{A random access iterator type for the
existence (or finiteness) of the upper bounds $u_j, j=0,\ldots,n-1$.
The value type of \ccc{UL_iterator} is \ccc{bool}.}
\ccNestedType{U_iterator}{A random acess iterator type for the entries
of the upper bound vector $u$.}
\ccNestedType{D_iterator}{A random access iterator type for the rows
of the quadratic objective function matrix $D$.}
\ccNestedType{C_iterator}{A random access iterator type for the
entries of the linear objective function vector $c$.}
\ccOperations
\ccCreationVariable{qp}
\ccMethod{int n() const;}{returns the number $n$ of variables (number
of columns of $A$) in \ccVar.}
\ccMethod{int m() const;}{returns the number $m$ of constraints
(number of rows of $A$) in \ccVar.}
\ccMethod{const A_iterator& a() const;}{returns an iterator for the columns
of $A$. For $j=0,\ldots,n-1$, $\ccVar.\ccc{a()}[j]$ is a random access
iterator for column $j$. This means that $\ccVar.\ccc{a()}[j][i]$ is the
entry of $A$ in row $i$ and column $j$ (row and column indices start
from $0$).}
\ccMethod{const B_iterator& b() const;}{returns an iterator for the entries
of $b$.}
\ccMethod{const R_iterator& r() const;}{returns an iterator for the entries
of $\qprel$. The value \ccc{CGAL::SMALLER} stands
for $\leq$, \ccc{CGAL::EQUAL} stands for $=$, and \ccc{CGAL::LARGER}
stands for $\geq$.}
\ccMethod{const FL_iterator& fl() const;}{returns an iterator for the
existence of the lower bounds $l_j, j=0,\ldots,n-1$. If
$\ccVar.\ccc{fl()}[j]=true$, the variable $x_j$ has a lower
bound, otherwise it has no lower bound.}
\ccMethod{const L_iterator& l() const;}{returns an iterator for the
entries of $l$. If $\ccVar.\ccc{fl()}[j]=\ccc{false}$, the value
$\ccVar.\ccc{l()}[j]$ is not accessed.}
\ccMethod{const FU_iterator& fu() const;}{returns an iterator for the
existence of the upper bounds $u_j, j=0,\ldots,n-1$. If
$\ccVar.\ccc{fu()}[j]=true$, the variable $x_j$ has an upper
bound, otherwise it has no upper bound.}
\ccMethod{const U_iterator& u() const;}{returns an iterator for the
entries of $u$. If $\ccVar.\ccc{fu()}[j]=\ccc{false}$, the value
$\ccVar.\ccc{u()}[j]$ is not accessed.}
\ccMethod{const D_iterator& d() const;}{returns an iterator for the rows of
$D$. For $i=0,\ldots,n-1$, $\ccVar.\ccc{d()}[i]$ is a random access
iterator for the entries in row $i$ \emph{below or on the diagonal}.
This means that $\ccVar.\ccc{d()}[i][j]$ is valid only for $j\leq i$
and returns the entry of $D$ in row $i$ and column $j$ (row and
column indices start from $0$).}
\ccMethod{const C_iterator& c() const;}{returns an iterator for the entries
of $c$.}
\ccMethod{const C_iterator::value_type& c0() const;}{returns the constant term
$c_0$ of the objective function.}
\ccRequirements
The value types of all iterator types (nested iterator types,
respectively, for \ccc{A_iterator} and \ccc{D_iterator}) must be
convertible to some common Euclidian ring number type \ccc{ET}.
\ccSeeAlso
\end{ccRefConcept}