cgal/NewKernel_d/include/CGAL/Kernel_d/function_objects_cartesian.h

219 lines
7.4 KiB
C++

#ifndef CGAL_KERNEL_D_FUNCTION_OBJECTS_CARTESIAN_H
#define CGAL_KERNEL_D_FUNCTION_OBJECTS_CARTESIAN_H
#include <CGAL/marcutils.h>
#include <CGAL/is_iterator.h>
#include <CGAL/number_utils.h>
#include <CGAL/Kernel/Return_base_tag.h>
#include <CGAL/transforming_iterator.h>
#include <CGAL/transforming_pair_iterator.h>
#include <CGAL/functor_tags.h>
#include <CGAL/exactness.h>
#include <functional>
namespace CGAL {
namespace CartesianDKernelFunctors {
template<class R_> struct Orientation {
typedef R_ R;
typedef typename R_::FT FT;
typedef typename R::Vector Vector;
typedef typename R::Point Point;
typedef typename R::Orientation result_type;
typedef typename R::LA::template Matrix<typename R::Default_ambient_dimension,typename R::Default_ambient_dimension,typename R::Max_ambient_dimension,typename R::Max_ambient_dimension>::type Matrix;
template<class Iter>
result_type operator()(Iter f, Iter const& e, Vector_tag)const{
typename R::template Compute<Compute_cartesian_coordinate_tag>::type c;
Matrix m(R().dimension(),R().dimension());
for(int i=0;f!=e;++f,++i) {
for(int j=0;j<R().dimension();++j){
Vector const& v=*f;
m(i,j)=c(v,j);
}
}
return R::LA::sign_of_determinant(CGAL_MOVE(m));
}
template<class Iter>
result_type operator()(Iter f, Iter const& e, Point_tag)const{
typename R::template Compute<Compute_cartesian_coordinate_tag>::type c;
Matrix m(R().dimension(),R().dimension());
Point const& p0=*f++;
for(int i=0;f!=e;++f,++i) {
for(int j=0;j<R().dimension();++j){
Point const& p=*f;
m(i,j)=c(p,j)-c(p0,j);
}
}
return R::LA::sign_of_determinant(CGAL_MOVE(m));
}
template<class Iter>
result_type operator()(Iter const&f, Iter const& e)const{
typename std::iterator_traits<Iter>::difference_type d=std::distance(f,e);
int dim=R().dimension();
if(d==dim) return operator()(f,e,Vector_tag());
CGAL_assertion(d==dim+1);
return operator()(f,e,Point_tag());
}
//TODO: version that takes objects directly instead of iterators
};
template<class R_> struct Construct_opposite_vector {
typedef R_ R;
typedef typename R_::FT FT;
typedef typename R::Vector Vector;
typedef typename R::template Construct<Construct_vector_tag>::type CV;
typedef typename R::template Construct<Construct_vector_cartesian_const_iterator_tag>::type CI;
typedef Vector result_type;
typedef Vector argument_type;
result_type operator()(Vector const&v)const{
CI ci;
return CV()(make_transforming_iterator(ci.begin(v),std::negate<FT>()),make_transforming_iterator(ci.end(v),std::negate<FT>()));
}
};
template<class R_> struct Construct_sum_of_vectors {
typedef R_ R;
typedef typename R_::FT FT;
typedef typename R::Vector Vector;
typedef typename R::template Construct<Construct_vector_tag>::type CV;
typedef typename R::template Construct<Construct_vector_cartesian_const_iterator_tag>::type CI;
typedef Vector result_type;
typedef Vector first_argument_type;
typedef Vector second_argument_type;
result_type operator()(Vector const&a, Vector const&b)const{
CI ci;
return CV()(make_transforming_pair_iterator(ci.begin(a),ci.begin(b),std::plus<FT>()),make_transforming_pair_iterator(ci.end(a),ci.end(b),std::plus<FT>()));
}
};
template<class R_> struct Construct_difference_of_vectors {
typedef R_ R;
typedef typename R_::FT FT;
typedef typename R::Vector Vector;
typedef typename R::template Construct<Construct_vector_tag>::type CV;
typedef typename R::template Construct<Construct_vector_cartesian_const_iterator_tag>::type CI;
typedef Vector result_type;
typedef Vector first_argument_type;
typedef Vector second_argument_type;
result_type operator()(Vector const&a, Vector const&b)const{
CI ci;
return CV()(make_transforming_pair_iterator(ci.begin(a),ci.begin(b),std::minus<FT>()),make_transforming_pair_iterator(ci.end(a),ci.end(b),std::minus<FT>()));
}
};
template<class R_> struct Construct_midpoint {
typedef R_ R;
typedef typename R_::FT FT;
typedef typename R::Point Point;
typedef typename R::template Construct<Construct_point_tag>::type CP;
typedef typename R::template Construct<Construct_point_cartesian_const_iterator_tag>::type CI;
typedef Point result_type;
typedef Point first_argument_type;
typedef Point second_argument_type;
struct Average : std::binary_function<FT,FT,FT> {
FT operator()(FT const&a, FT const&b)const{
return (a+b)/2;
}
};
result_type operator()(Point const&a, Point const&b)const{
CI ci;
//Divide<FT,int> half(2);
//return CP()(make_transforming_iterator(make_transforming_pair_iterator(ci.begin(a),ci.begin(b),std::plus<FT>()),half),make_transforming_iterator(make_transforming_pair_iterator(ci.end(a),ci.end(b),std::plus<FT>()),half));
return CP()(make_transforming_pair_iterator(ci.begin(a),ci.begin(b),Average()),make_transforming_pair_iterator(ci.end(a),ci.end(b),Average()));
}
};
template<class R_> struct Compute_squared_length {
typedef R_ R;
typedef typename R_::FT FT;
typedef typename R::Vector Vector;
typedef typename R::template Construct<Construct_vector_cartesian_const_iterator_tag>::type CI;
typedef FT result_type;
typedef Vector argument_type;
result_type operator()(Vector const&a)const{
CI ci;
typename Algebraic_structure_traits<FT>::Square f;
// TODO: avoid this FT(0)+...
return std::accumulate(make_transforming_iterator(ci.begin(a),f),make_transforming_iterator(ci.end(a),f),FT(0));
}
};
template<class R_> struct Compute_squared_distance {
typedef R_ R;
typedef typename R_::FT FT;
typedef typename R::Point Point;
typedef typename R::template Construct<Construct_point_cartesian_const_iterator_tag>::type CI;
typedef FT result_type;
typedef Point first_argument_type;
typedef Point second_argument_type;
struct Sq_diff : std::binary_function<FT,FT,FT> {
FT operator()(FT const&a, FT const&b)const{
return CGAL::square(a-b);
}
};
result_type operator()(Point const&a, Point const&b)const{
CI ci;
Sq_diff f;
// TODO: avoid this FT(0)+...
return std::accumulate(make_transforming_pair_iterator(ci.begin(a),ci.begin(b),f),make_transforming_pair_iterator(ci.end(a),ci.end(b),f),FT(0));
}
};
template<class R_> struct Less_cartesian_coordinate {
typedef R_ R;
typedef typename R_::FT FT;
typedef typename R::Comparison_result result_type;
typedef typename R::template Compute<Compute_cartesian_coordinate_tag>::type Cc;
// TODO: This is_exact thing should be reengineered.
// the goal is to have a way to tell: don't filter this
typedef typename CGAL::Is_exact<Cc>::type Is_exact;
template<class V,class W,class I>
result_type operator()(V const&a, V const&b, I i)const{
Cc c;
return c(a,i)<c(b,i);
}
};
template<class R_> struct Construct_segment {
typedef R_ R;
typedef typename R_::Point Point;
typedef typename R_::Segment Segment;
typedef Segment result_type;
#ifdef CGAL_CXX0X
template<class...U> result_type operator()(U&&...u)const{
return result_type(std::forward<U>(u)...);
}
#else
result_type operator()(Point const&a, Point const&b)const{
return result_type(a,b);
}
#endif
};
template<class R_> struct Construct_segment_extremity {
typedef R_ R;
typedef typename R_::Point Point;
typedef typename R_::Segment Segment;
typedef Point result_type;
result_type operator()(Segment const&s, int i)const{
if(i==0) return s.source();
CGAL_assertion(i==1);
return s.target();
}
#ifdef CGAL_CXX0X
result_type operator()(Segment &&s, int i)const{
if(i==0) return std::move(s).source();
CGAL_assertion(i==1);
return std::move(s).target();
}
#endif
};
}
}
#endif // CGAL_KERNEL_D_FUNCTION_OBJECTS_CARTESIAN_H