mirror of https://github.com/CGAL/cgal
2225 lines
61 KiB
C++
2225 lines
61 KiB
C++
// ============================================================================
|
|
//
|
|
// Copyright (c) 1999,2000,2001 The CGAL Consortium
|
|
//
|
|
// This software and related documentation is part of an INTERNAL release
|
|
// of the Computational Geometry Algorithms Library (CGAL). It is not
|
|
// intended for general use.
|
|
//
|
|
// ----------------------------------------------------------------------------
|
|
//
|
|
// release :
|
|
// release_date :
|
|
//
|
|
// file : include/CGAL/Triangulation_data_structure_3.h
|
|
// revision : $Revision$
|
|
// author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
|
|
// Sylvain Pion <Sylvain.Pion@sophia.inria.fr>
|
|
//
|
|
// coordinator : INRIA Sophia Antipolis (<Mariette.Yvinec@sophia.inria.fr>)
|
|
//
|
|
// ============================================================================
|
|
//
|
|
// combinatorial triangulation of the boundary of a polytope
|
|
// of dimension d in dimension d+1
|
|
// for -1 <= d <= 3
|
|
//
|
|
// ============================================================================
|
|
|
|
#ifndef CGAL_TRIANGULATION_DATA_STRUCTURE_3_H
|
|
#define CGAL_TRIANGULATION_DATA_STRUCTURE_3_H
|
|
|
|
#include <CGAL/basic.h>
|
|
|
|
#include <utility>
|
|
#include <map>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include <CGAL/triple.h>
|
|
|
|
#include <CGAL/Triangulation_short_names_3.h>
|
|
#include <CGAL/triangulation_assertions.h>
|
|
#include <CGAL/Triangulation_utils_3.h>
|
|
|
|
#include <CGAL/Pointer.h>
|
|
|
|
#include <CGAL/Triangulation_ds_cell_3.h>
|
|
#include <CGAL/Triangulation_ds_vertex_3.h>
|
|
|
|
#include <CGAL/Triangulation_ds_iterators_3.h>
|
|
#include <CGAL/Triangulation_ds_circulators_3.h>
|
|
|
|
#include <CGAL/DS_Container.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template <class Vb, class Cb>
|
|
class Triangulation_data_structure_3
|
|
: public Triangulation_utils_3
|
|
{
|
|
public:
|
|
|
|
typedef Triangulation_data_structure_3<Vb,Cb> Tds;
|
|
typedef Vb Vertex_base;
|
|
typedef Cb Cell_base;
|
|
|
|
typedef Triangulation_ds_vertex_3<Tds> Vertex;
|
|
typedef Triangulation_ds_cell_3<Tds> Cell;
|
|
|
|
typedef Pointer<Cell> Cell_handle;
|
|
typedef Pointer<Vertex> Vertex_handle;
|
|
// typedef Cell * Cell_handle;
|
|
// typedef Vertex * Vertex_handle;
|
|
|
|
typedef std::pair<Cell_handle, int> Facet;
|
|
typedef triple<Cell_handle, int, int> Edge;
|
|
|
|
friend class Triangulation_ds_facet_iterator_3<Tds>;
|
|
friend class Triangulation_ds_edge_iterator_3<Tds>;
|
|
|
|
friend class Triangulation_ds_cell_circulator_3<Tds>;
|
|
friend class Triangulation_ds_facet_circulator_3<Tds>;
|
|
|
|
typedef DS_Container<Cell> Cell_container;
|
|
typedef DS_Container<Vertex> Vertex_container;
|
|
typedef typename Cell_container::iterator Cell_iterator;
|
|
typedef typename Vertex_container::iterator Vertex_iterator;
|
|
typedef Triangulation_ds_facet_iterator_3<Tds> Facet_iterator;
|
|
typedef Triangulation_ds_edge_iterator_3<Tds> Edge_iterator;
|
|
|
|
typedef Triangulation_ds_cell_circulator_3<Tds> Cell_circulator;
|
|
typedef Triangulation_ds_facet_circulator_3<Tds> Facet_circulator;
|
|
|
|
Triangulation_data_structure_3()
|
|
: _dimension(-2), _number_of_vertices(0)
|
|
{}
|
|
|
|
Triangulation_data_structure_3(const Tds & tds)
|
|
: _number_of_vertices(0)
|
|
// _number_of_vertices is set to 0 so that clear() in copy_tds() works
|
|
{
|
|
copy_tds(tds);
|
|
}
|
|
|
|
~Triangulation_data_structure_3()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
Tds & operator= (const Tds & tds)
|
|
{
|
|
copy_tds(tds);
|
|
return *this;
|
|
}
|
|
|
|
int number_of_vertices() const {return _number_of_vertices;}
|
|
|
|
int dimension() const {return _dimension;}
|
|
|
|
int number_of_cells() const
|
|
{
|
|
if ( dimension() < 3 ) return 0;
|
|
return cell_container().size();
|
|
}
|
|
|
|
int number_of_facets() const
|
|
{
|
|
if ( dimension() < 2 ) return 0;
|
|
return std::distance(facets_begin(), facets_end());
|
|
}
|
|
|
|
int number_of_edges() const
|
|
{
|
|
if ( dimension() < 1 ) return 0;
|
|
return std::distance(edges_begin(), edges_end());
|
|
}
|
|
|
|
// USEFUL CONSTANT TIME FUNCTIONS
|
|
|
|
// SETTING
|
|
// to be protected ?
|
|
|
|
void set_number_of_vertices(int n) { _number_of_vertices = n; }
|
|
|
|
void set_dimension(int n) { _dimension = n; }
|
|
|
|
Vertex_handle create_vertex()
|
|
{
|
|
return vertex_container().get_new_element();
|
|
}
|
|
|
|
Cell_handle create_cell()
|
|
{
|
|
return get_new_cell();
|
|
}
|
|
|
|
Cell_handle create_cell(Cell_handle c)
|
|
{
|
|
Cell_handle cnew = get_new_cell();
|
|
*cnew = *c;
|
|
cnew->init();
|
|
return cnew;
|
|
}
|
|
|
|
Cell_handle create_cell(Vertex_handle v0, Vertex_handle v1,
|
|
Vertex_handle v2, Vertex_handle v3)
|
|
{
|
|
Cell_handle c = get_new_cell();
|
|
c->set_vertices(v0,v1,v2,v3);
|
|
return c;
|
|
}
|
|
|
|
Cell_handle create_cell(Vertex_handle v0, Vertex_handle v1,
|
|
Vertex_handle v2, Vertex_handle v3,
|
|
Cell_handle n0, Cell_handle n1,
|
|
Cell_handle n2, Cell_handle n3)
|
|
{
|
|
Cell_handle c = get_new_cell();
|
|
c->set_vertices(v0,v1,v2,v3);
|
|
c->set_neighbors(n0,n1,n2,n3);
|
|
return c;
|
|
}
|
|
|
|
private:
|
|
|
|
Cell_handle get_new_cell()
|
|
{
|
|
Cell_handle r = cell_container().get_new_element();
|
|
r->init();
|
|
return r;
|
|
}
|
|
|
|
public:
|
|
// not documented
|
|
void read_cells(std::istream& is, std::map< int, Vertex_handle > &V,
|
|
int & m, std::map< int, Cell_handle > &C );
|
|
// not documented
|
|
void print_cells(std::ostream& os, std::map<Vertex_handle, int> &V ) const;
|
|
|
|
// ACCESS FUNCTIONS
|
|
|
|
void delete_vertex( Vertex_handle v )
|
|
{
|
|
CGAL_triangulation_expensive_precondition( is_vertex(v) );
|
|
vertex_container().release_element(&*v);
|
|
}
|
|
|
|
void delete_cell( Cell_handle c )
|
|
{
|
|
CGAL_triangulation_expensive_precondition( dimension() != 3 ||
|
|
is_cell(c) );
|
|
CGAL_triangulation_expensive_precondition( dimension() != 2 ||
|
|
is_facet(c,3) );
|
|
CGAL_triangulation_expensive_precondition( dimension() != 1 ||
|
|
is_edge(c,0,1) );
|
|
CGAL_triangulation_expensive_precondition( dimension() != 0 ||
|
|
is_vertex(c->vertex(0)) );
|
|
|
|
cell_container().release_element(&*c);
|
|
}
|
|
|
|
template <class It>
|
|
void delete_cells(It begin, It end)
|
|
{
|
|
for(; begin != end; ++begin)
|
|
delete_cell((*begin)->handle());
|
|
}
|
|
|
|
// QUERIES
|
|
|
|
bool is_vertex(Vertex_handle v) const;
|
|
bool is_edge(Cell_handle c, int i, int j) const;
|
|
bool is_edge(Vertex_handle u, Vertex_handle v, Cell_handle & c,
|
|
int & i, int & j) const;
|
|
bool is_facet(Cell_handle c, int i) const;
|
|
bool is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w,
|
|
Cell_handle & c, int & i, int & j, int & k) const;
|
|
bool is_cell(Cell_handle c) const;
|
|
bool is_cell(Vertex_handle u, Vertex_handle v,
|
|
Vertex_handle w, Vertex_handle t,
|
|
Cell_handle & c, int & i, int & j, int & k, int & l) const;
|
|
bool is_cell(Vertex_handle u, Vertex_handle v,
|
|
Vertex_handle w, Vertex_handle t) const;
|
|
|
|
bool has_vertex(const Facet & f, Vertex_handle v, int & j) const;
|
|
bool has_vertex(Cell_handle c, int i, Vertex_handle v, int & j) const;
|
|
bool has_vertex(const Facet & f, Vertex_handle v) const;
|
|
bool has_vertex(Cell_handle c, int i, Vertex_handle v) const;
|
|
|
|
bool are_equal(Cell_handle c, int i, Cell_handle n, int j) const;
|
|
bool are_equal(const Facet & f, const Facet & g) const;
|
|
bool are_equal(const Facet & f, Cell_handle n, int j) const;
|
|
|
|
// MODIFY
|
|
|
|
bool flip(Cell_handle c, int i);
|
|
bool flip(const Facet &f)
|
|
{ return flip( f.first, f.second); }
|
|
|
|
void flip_flippable(Cell_handle c, int i);
|
|
void flip_flippable(const Facet &f)
|
|
{ return flip_flippable( f.first, f.second ); }
|
|
|
|
bool flip(Cell_handle c, int i, int j);
|
|
bool flip(const Edge &e)
|
|
{ return flip( e.first, e.second, e.third ); }
|
|
|
|
void flip_flippable(Cell_handle c, int i, int j);
|
|
void flip_flippable(const Edge &e)
|
|
{ return flip_flippable( e.first, e.second, e.third ); }
|
|
|
|
private:
|
|
// common to flip and flip_flippable
|
|
void flip_really(Cell_handle c, int i, Cell_handle n, int in);
|
|
void flip_really(Cell_handle c, int i, int j,
|
|
Cell_handle c1, Vertex_handle v1, int i1, int j1, int next1,
|
|
Cell_handle c2, Vertex_handle v2, int i2, int j2, int next2,
|
|
Vertex_handle v3);
|
|
public:
|
|
|
|
//INSERTION
|
|
|
|
Vertex_handle insert_in_cell(Vertex_handle v, Cell_handle c);
|
|
|
|
Vertex_handle insert_in_facet(Vertex_handle v, const Facet & f)
|
|
{ return insert_in_facet(w,f.first,f.second); }
|
|
|
|
Vertex_handle insert_in_facet(Vertex_handle v, Cell_handle c, int i);
|
|
|
|
Vertex_handle insert_in_edge(Vertex_handle v, const Edge & e)
|
|
{ return insert_in_edge(w, e.first, e.second, e.third); }
|
|
|
|
Vertex_handle insert_in_edge(Vertex_handle v, Cell_handle c, int i, int j);
|
|
|
|
Vertex_handle insert_increase_dimension(Vertex_handle v, // new vertex
|
|
Vertex_handle star = NULL,
|
|
bool reorient = false);
|
|
|
|
// I think the find_conflicts_[23] should be in the TDS, as they do not
|
|
// depend on geometry, although they may, depending on the actual
|
|
// Conflict_test. But e.g. for incident_cells(), the tester is not
|
|
// geometric, so it makes sense to have it in the TDS.
|
|
|
|
template <class FacetIt, class CellIt>
|
|
void star_hole_3(Vertex_handle newv, FacetIt facet_begin, FacetIt facet_end,
|
|
CellIt cell_begin, CellIt cell_end)
|
|
{
|
|
star_hole_3(newv, facet_begin, facet_end);
|
|
delete_cells(cell_begin, cell_end);
|
|
}
|
|
|
|
template <class FacetIt, class CellIt>
|
|
void star_hole_2(Vertex_handle newv, FacetIt facet_begin, FacetIt facet_end,
|
|
CellIt cell_begin, CellIt cell_end)
|
|
{
|
|
star_hole_2(newv, facet_begin, facet_end);
|
|
delete_cells(cell_begin, cell_end);
|
|
}
|
|
|
|
// Facets->first is in conflict, and we walk inside the hole.
|
|
//
|
|
// Note #1 : If we can merge the FacetIt loops, then maybe we can get rid
|
|
// of the corresponding container by just walking over the boundary ?
|
|
// Thinking a bit more about that : I think it's either we have a container
|
|
// of facets, or we have a recursive function over the boundary... (?)
|
|
template <class FacetIt>
|
|
void star_hole_3(Vertex_handle newv, FacetIt facet_begin, FacetIt facet_end)
|
|
{
|
|
CGAL_triangulation_precondition(dimension()==3);
|
|
|
|
// Would be nice if there were already room reserved in the facet
|
|
// vector.
|
|
std::vector<Cell_handle > V;
|
|
V.reserve(std::distance(facet_begin, facet_end));
|
|
|
|
// For each facet on the boundary :
|
|
// - create a new cell, link its vertices and one cell pointer.
|
|
for (FacetIt fit = facet_begin; fit != facet_end; ++fit) {
|
|
Cell_handle old = fit->first;
|
|
Cell_handle bound = old->neighbor(fit->second);
|
|
// Note that the initial orientation of the new cells is positive,
|
|
// as we copy it from an existing one.
|
|
Cell_handle newc = create_cell(old->vertex(0),
|
|
old->vertex(1),
|
|
old->vertex(2),
|
|
old->vertex(3));
|
|
newc->set_vertex(fit->second, newv);
|
|
set_adjacency(newc, bound, fit->second, bound->index(old));
|
|
newc->vertex(0)->set_cell(newc);
|
|
newc->vertex(1)->set_cell(newc);
|
|
newc->vertex(2)->set_cell(newc);
|
|
newc->vertex(3)->set_cell(newc);
|
|
V.push_back(newc);
|
|
}
|
|
|
|
// For each facet on the boundary, for each of the 3 edges :
|
|
// - we must find the neighbor facet
|
|
// - link the 2 corresponding new cells.
|
|
int zz = -1;
|
|
for (FacetIt fit2 = facet_begin; fit2 != facet_end; ++fit2) {
|
|
++zz;
|
|
Cell_handle old = fit2->first;
|
|
Cell_handle newc = V[zz];
|
|
|
|
for (int i=0; i<=3; ++i) {
|
|
// We must avoid i == fit->second, but the following
|
|
// test will avoid it too.
|
|
if (newc->neighbor(i) != NULL)
|
|
continue;
|
|
|
|
// Now we turn around the edge inside the hole.
|
|
// To recognize when we hit the boundary, we look at the
|
|
// neighbor, and see if it doesn't point back to us, in which
|
|
// case it's the boundary cell we are looking for.
|
|
Cell_handle t = old;
|
|
Vertex_handle k = t->vertex(fit2->second);
|
|
int j = i;
|
|
Cell_handle newt = t->neighbor(j);
|
|
int z;
|
|
while (newt->has_neighbor(t, z)) {
|
|
j = newt->index(k);
|
|
k = newt->vertex(z);
|
|
t = newt;
|
|
newt = t->neighbor(j);
|
|
};
|
|
|
|
// Compute the address of the corresponding new cell.
|
|
Cell_handle back;
|
|
for (int l=0;; ++l) {
|
|
back = newt->neighbor(l);
|
|
if (l==3)
|
|
break;
|
|
// The vertices are those of t except vertex(j) = newv.
|
|
if (back->vertex(j) == newv &&
|
|
back->vertex(j^1) == t->vertex(j^1) &&
|
|
back->vertex(j^2) == t->vertex(j^2) &&
|
|
back->vertex(j^3) == t->vertex(j^3))
|
|
break;
|
|
}
|
|
|
|
set_adjacency(newc, back, i, back->index(k));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note : the code is almost entirely duplicated, just to have dimension() a
|
|
// constant for performance. That's not perfect...
|
|
template <class FacetIt>
|
|
void star_hole_2(Vertex_handle newv, FacetIt facet_begin, FacetIt facet_end)
|
|
{
|
|
CGAL_triangulation_precondition(dimension()==2);
|
|
|
|
// Would be nice if there were already room reserved in the facet
|
|
// vector.
|
|
std::vector<Cell_handle > V;
|
|
V.reserve(std::distance(facet_begin, facet_end));
|
|
|
|
// For each facet on the boundary :
|
|
// - create a new cell, link its vertices and one cell pointer.
|
|
for (FacetIt fit = facet_begin; fit != facet_end; ++fit) {
|
|
Cell_handle old = fit->first;
|
|
Cell_handle bound = old->neighbor(fit->second);
|
|
// Note that the initial orientation of the new cells is positive,
|
|
// as we copy it from an existing one.
|
|
Cell_handle newc = create_cell(old->vertex(0),
|
|
old->vertex(1),
|
|
old->vertex(2),
|
|
NULL);
|
|
newc->set_vertex(fit->second, newv);
|
|
set_adjacency(newc, bound, fit->second, bound->index(old));
|
|
newc->vertex(0)->set_cell(newc);
|
|
newc->vertex(1)->set_cell(newc);
|
|
newc->vertex(2)->set_cell(newc);
|
|
V.push_back(newc);
|
|
}
|
|
|
|
// For each facet on the boundary, for each of the 3 edges :
|
|
// - we must find the neighbor facet
|
|
// - link the 2 corresponding new cells.
|
|
int zz = -1;
|
|
for (FacetIt fit2 = facet_begin; fit2 != facet_end; ++fit2) {
|
|
++zz;
|
|
Cell_handle old = fit2->first;
|
|
Cell_handle newc = V[zz];
|
|
|
|
for (int i=0; i<=2; ++i) {
|
|
// We must avoid i == fit->second, but the following
|
|
// test will avoid it too.
|
|
if (newc->neighbor(i) != NULL)
|
|
continue;
|
|
|
|
// Now we turn around the edge inside the hole.
|
|
// To recognize when we hit the boundary, we look at the
|
|
// neighbor, and see if it doesn't point back to us, in which
|
|
// case it's the boundary cell we are looking for.
|
|
Cell_handle t = old;
|
|
Vertex_handle k = t->vertex(fit2->second);
|
|
int j = i;
|
|
Cell_handle newt = t->neighbor(j);
|
|
int z;
|
|
while (newt->has_neighbor(t, z)) {
|
|
j = newt->index(k);
|
|
k = newt->vertex(z);
|
|
t = newt;
|
|
newt = t->neighbor(j);
|
|
};
|
|
|
|
// Compute the address of the corresponding new cell.
|
|
Cell_handle back;
|
|
for (int l=0;; ++l) {
|
|
back = newt->neighbor(l);
|
|
if (l==2)
|
|
break;
|
|
// The vertices are those of t except vertex(j) = newv.
|
|
if (back->vertex(j) == newv &&
|
|
back->vertex(cw(j)) == t->vertex(cw(j)) &&
|
|
back->vertex(ccw(j)) == t->vertex(ccw(j)))
|
|
break;
|
|
}
|
|
|
|
set_adjacency(newc, back, i, back->index(k));
|
|
}
|
|
}
|
|
}
|
|
|
|
// ITERATOR METHODS
|
|
|
|
Cell_iterator cells_begin() const
|
|
{
|
|
if ( dimension() < 3 )
|
|
return cells_end();
|
|
return cell_container().begin();
|
|
}
|
|
|
|
Cell_iterator cells_end() const
|
|
{
|
|
return cell_container().end();
|
|
}
|
|
|
|
Facet_iterator facets_begin() const
|
|
{
|
|
if ( dimension() < 2 )
|
|
return facets_end();
|
|
return Facet_iterator(this);
|
|
}
|
|
|
|
Facet_iterator facets_end() const
|
|
{
|
|
return Facet_iterator(this, 1);
|
|
}
|
|
|
|
Edge_iterator edges_begin() const
|
|
{
|
|
if ( dimension() < 1 )
|
|
return edges_end();
|
|
return Edge_iterator(this);
|
|
}
|
|
|
|
Edge_iterator edges_end() const
|
|
{
|
|
return Edge_iterator(this,1);
|
|
}
|
|
|
|
Vertex_iterator vertices_begin() const
|
|
{
|
|
return vertex_container().begin();
|
|
}
|
|
|
|
Vertex_iterator vertices_end() const
|
|
{
|
|
return vertex_container().end();
|
|
}
|
|
|
|
// CIRCULATOR METHODS
|
|
|
|
// cells around an edge
|
|
Cell_circulator incident_cells(const Edge & e) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Cell_circulator(e);
|
|
}
|
|
Cell_circulator incident_cells(Cell_handle ce, int i, int j) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Cell_circulator(ce, i, j);
|
|
}
|
|
|
|
Cell_circulator incident_cells(const Edge & e, Cell_handle start) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Cell_circulator(e, start);
|
|
}
|
|
Cell_circulator incident_cells(Cell_handle ce, int i, int j,
|
|
Cell_handle start) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Cell_circulator(ce, i, j, start);
|
|
}
|
|
|
|
//facets around an edge
|
|
Facet_circulator incident_facets(const Edge & e) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Facet_circulator(e);
|
|
}
|
|
Facet_circulator incident_facets(Cell_handle ce, int i, int j) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Facet_circulator(ce, i, j);
|
|
}
|
|
Facet_circulator incident_facets(const Edge & e, const Facet & start) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Facet_circulator(e, start);
|
|
}
|
|
Facet_circulator incident_facets(Cell_handle ce, int i, int j,
|
|
const Facet & start) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Facet_circulator(ce, i, j, start);
|
|
}
|
|
Facet_circulator incident_facets(const Edge & e,
|
|
Cell_handle start, int f) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Facet_circulator(e, start, f);
|
|
}
|
|
Facet_circulator incident_facets(Cell_handle ce, int i, int j,
|
|
Cell_handle start, int f) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return Facet_circulator(ce, i, j, start, f);
|
|
}
|
|
|
|
// around a vertex
|
|
private:
|
|
class Incident_tester {
|
|
Vertex_handle _v;
|
|
public :
|
|
Incident_tester(Vertex_handle v) : _v(v) {}
|
|
bool operator()(Cell_handle c) const
|
|
{ return c->has_vertex(v); }
|
|
};
|
|
|
|
private:
|
|
// TODO : This should be reimplemented. Using find_conflict is overkill...
|
|
template <class OutIt>
|
|
void
|
|
incident_cells(Vertex_handle v, OutIt outcells) const
|
|
{
|
|
if ( dimension() < 3 )
|
|
return;
|
|
|
|
std::vector<Facet> facets;
|
|
std::vector<Cell_handle > cells;
|
|
facets.reserve(64);
|
|
cells.reserve(64);
|
|
find_conflicts_3(v->cell(), Incident_tester(v), facets, cells);
|
|
for(typename std::vector<Facet>::iterator fit = facets.begin();
|
|
fit != facets.end(); ++fit)
|
|
fit->first->set_in_conflict_flag(0);
|
|
for(typename std::vector<Cell_handle >::iterator cit = cells.begin();
|
|
cit != cells.end(); ++cit) {
|
|
*cit->set_in_conflict_flag(0);
|
|
*outcells++ = *cit;
|
|
}
|
|
}
|
|
|
|
public:
|
|
void
|
|
incident_cells(Vertex_handle v, std::set<Cell_handle> & cells,
|
|
Cell_handle c = NULL ) const;
|
|
|
|
void
|
|
incident_vertices(Vertex_handle v, std::set<Vertex_handle> & vertices,
|
|
Cell_handle c = NULL ) const;
|
|
|
|
// CHECKING
|
|
bool is_valid(bool verbose = false, int level = 0) const;
|
|
|
|
|
|
// Helping functions
|
|
Vertex_handle copy_tds(const Tds & tds, Vertex_handle vert = NULL);
|
|
// returns the new vertex corresponding to vert in the new tds
|
|
|
|
void swap(Tds & tds);
|
|
|
|
void clear();
|
|
|
|
void clear_cells_only();
|
|
|
|
void set_adjacency(Cell_handle c0, Cell_handle c1, int i0, int i1) const
|
|
{
|
|
CGAL_triangulation_assertion(i0 >= 0 && i0 <= dimension());
|
|
CGAL_triangulation_assertion(i1 >= 0 && i1 <= dimension());
|
|
CGAL_triangulation_assertion(c0 != c1);
|
|
c0->set_neighbor(i0,c1);
|
|
c1->set_neighbor(i1,c0);
|
|
}
|
|
|
|
// Change the orientation of the cell by swapping indices 0 and 1.
|
|
void change_orientation(Cell_handle c) const
|
|
{
|
|
Vertex_handle tmp_v = c->vertex(0);
|
|
c->set_vertex(0, c->vertex(1));
|
|
c->set_vertex(1, tmp_v);
|
|
Cell_handle tmp_c = c->neighbor(0);
|
|
c->set_neighbor(0, c->neighbor(1));
|
|
c->set_neighbor(1, tmp_c);
|
|
}
|
|
|
|
private:
|
|
|
|
Cell_container & cell_container() { return _cell_container; }
|
|
const Cell_container & cell_container() const { return _cell_container; }
|
|
|
|
Vertex_container & vertex_container() {return _vertex_container;}
|
|
const Vertex_container & vertex_container() const {return _vertex_container;}
|
|
|
|
// in dimension i, number of vertices >= i+2
|
|
// ( the boundary of a simplex in dimension i+1 has i+2 vertices )
|
|
int _dimension;
|
|
int _number_of_vertices;
|
|
|
|
Cell_container _cell_container;
|
|
Vertex_container _vertex_container;
|
|
|
|
// used by is-valid :
|
|
bool count_vertices(int & i, bool verbose = false, int level = 0) const;
|
|
// counts AND checks the validity
|
|
bool count_facets(int & i, bool verbose = false, int level = 0) const;
|
|
// counts but does not check
|
|
bool count_edges(int & i, bool verbose = false, int level = 0) const;
|
|
// counts but does not check
|
|
bool count_cells(int & i, bool verbose = false, int level = 0) const;
|
|
// counts AND checks the validity
|
|
};
|
|
|
|
template < class Vb, class Cb>
|
|
std::istream&
|
|
operator>>(std::istream& is, Triangulation_data_structure_3<Vb,Cb>& tds)
|
|
// reads :
|
|
// the dimension
|
|
// the number of vertices
|
|
// the number of cells
|
|
// the cells by the indices of their vertices
|
|
// the neighbors of each cell by their index in the preceding list of cells
|
|
// when dimension < 3 : the same with faces of maximal dimension
|
|
{
|
|
typedef Triangulation_data_structure_3<Vb,Cb> Tds;
|
|
typedef typename Tds::Vertex_handle Vertex_handle;
|
|
typedef typename Tds::Cell_handle Cell_handle;
|
|
|
|
tds.clear();
|
|
|
|
int n, d;
|
|
is >> d >> n;
|
|
tds.set_dimension(d);
|
|
tds.set_number_of_vertices(n);
|
|
|
|
if(n == 0)
|
|
return is;
|
|
|
|
std::map< int, Vertex_handle > V;
|
|
|
|
// creation of the vertices
|
|
for (int i=0; i < n; i++) {
|
|
// is >> p;
|
|
// V[i] = tds.create_vertex();
|
|
// V[i]->set_point(p);
|
|
V[i] = tds.create_vertex();
|
|
}
|
|
|
|
std::map< int, Cell_handle > C;
|
|
int m;
|
|
|
|
tds.read_cells(is, V, m, C);
|
|
CGAL_triangulation_assertion( tds.is_valid() );
|
|
return is;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
std::ostream&
|
|
operator<<(std::ostream& os, const Triangulation_data_structure_3<Vb,Cb> &tds)
|
|
// writes :
|
|
// the dimension
|
|
// the number of vertices
|
|
// the number of cells
|
|
// the cells by the indices of their vertices
|
|
// the neighbors of each cell by their index in the preceding list of cells
|
|
// when dimension < 3 : the same with faces of maximal dimension
|
|
{
|
|
typedef Triangulation_data_structure_3<Vb,Cb> Tds;
|
|
typedef typename Tds::Vertex_handle Vertex_handle;
|
|
typedef typename Tds::Vertex_iterator Vertex_iterator;
|
|
|
|
std::map<Vertex_handle, int> V;
|
|
|
|
// outputs dimension and number of vertices
|
|
int n = tds.number_of_vertices();
|
|
|
|
if (is_ascii(os))
|
|
os << tds.dimension() << std::endl << n << std::endl;
|
|
else
|
|
os << tds.dimension() << n;
|
|
|
|
if (n == 0)
|
|
return os;
|
|
|
|
// index the vertices
|
|
int i = 0;
|
|
for (Vertex_iterator it=tds.vertices_begin(); it != tds.vertices_end(); ++it)
|
|
V[&(*it)] = i++;
|
|
|
|
CGAL_triangulation_assertion( i == n );
|
|
|
|
tds.print_cells(os, V);
|
|
|
|
return os;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_vertex(Vertex_handle v) const
|
|
{
|
|
return vertex_container().is_element(&*v);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_edge(Vertex_handle u, Vertex_handle v, Cell_handle &c, int &i, int &j) const
|
|
// returns false when dimension <1 or when indices wrong
|
|
{
|
|
if (u==v)
|
|
return false;
|
|
|
|
for(Cell_iterator cit = cell_container().begin(); cit != cells_end(); ++cit)
|
|
if (cit->has_vertex(u,i) && cit->has_vertex(v,j)) {
|
|
c = cit->handle();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_edge(Cell_handle c, int i, int j) const
|
|
// returns false when dimension <1
|
|
{
|
|
if ( i==j ) return false;
|
|
if ( (i<0) || (j<0) ) return false;
|
|
if ( (dimension() == 1) && ((i>1) || (j>1)) ) return false;
|
|
if ( (dimension() == 2) && ((i>2) || (j>2)) ) return false;
|
|
if ((i>3) || (j>3)) return false;
|
|
|
|
for(Cell_iterator cit = cell_container().begin(); cit != cells_end(); ++cit)
|
|
if (cit->handle() == c)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w,
|
|
Cell_handle & c, int & i, int & j, int & k) const
|
|
// returns false when dimension <2 or when indices wrong
|
|
{
|
|
if ( (u==v) || (u==w) || (v==w) ) return false;
|
|
Facet_iterator it = facets_begin();
|
|
while ( it != facets_end() ) {
|
|
if ( ( ((*it).first)->has_vertex(u,i) )
|
|
&& ( ((*it).first)->has_vertex(v,j) )
|
|
&& ( ((*it).first)->has_vertex(w,k) ) ) {
|
|
c = (*it).first;
|
|
return true;
|
|
}
|
|
++it;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_facet(Cell_handle c, int i) const
|
|
// returns false when dimension <2
|
|
{
|
|
CGAL_triangulation_precondition(i>=0 && i<4);
|
|
if ( (dimension() == 2) && (i!=3) )
|
|
return false;
|
|
return cell_container().is_element(&*c);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_cell( Cell_handle c ) const
|
|
// returns false when dimension <3
|
|
{
|
|
if (dimension() < 3)
|
|
return false;
|
|
return cell_container().is_element(&*c);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_cell(Vertex_handle u, Vertex_handle v, Vertex_handle w, Vertex_handle t,
|
|
Cell_handle & c, int & i, int & j, int & k, int & l) const
|
|
// returns false when dimension <3
|
|
{
|
|
if ( (u==v) || (u==w) || (u==t) || (v==w) || (v==t) || (w==t) )
|
|
return false;
|
|
for(Cell_iterator it = cells_begin(); it != cells_end(); ++it) {
|
|
if ( ( it->has_vertex(u,i) )
|
|
&& ( it->has_vertex(v,j) )
|
|
&& ( it->has_vertex(w,k) )
|
|
&& ( it->has_vertex(t,l) ) ) {
|
|
c = it->handle();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_cell(Vertex_handle u, Vertex_handle v, Vertex_handle w, Vertex_handle t)
|
|
const
|
|
// returns false when dimension <3
|
|
{
|
|
if ( (u==v) || (u==w) || (u==t) || (v==w) || (v==t) || (w==t) )
|
|
return false;
|
|
for(Cell_iterator it = cells_begin(); it != cells_end(); ++it) {
|
|
if ( it->has_vertex(u) &&
|
|
it->has_vertex(v) &&
|
|
it->has_vertex(w) &&
|
|
it->has_vertex(t) ) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
has_vertex(Cell_handle c, int i, Vertex_handle v, int & j) const
|
|
// computes the index j of the vertex in the cell c giving the query
|
|
// facet (c,i)
|
|
// j has no meaning if false is returned
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
return ( c->has_vertex(v,j) && (j != i) );
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
has_vertex(Cell_handle c, int i, Vertex_handle v) const
|
|
// checks whether the query facet (c,i) has vertex v
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
int j;
|
|
return ( c->has_vertex(v,j) && (j != i) );
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
has_vertex(const Facet & f, Vertex_handle v, int & j) const
|
|
{
|
|
return has_vertex(f.first, f.second, v, j);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
has_vertex(const Facet & f, Vertex_handle v) const
|
|
{
|
|
return has_vertex(f.first, f.second, v);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
are_equal(Cell_handle c, int i, Cell_handle n, int j) const
|
|
// tests whether facets c,i and n,j, have the same 3 vertices
|
|
// the triangulation is supposed to be valid, the orientation of the
|
|
// facets is not checked here
|
|
// the neighbor relations between c and n are not tested either,
|
|
// which allows to use this method before setting these relations
|
|
// (see remove in Delaunay_3)
|
|
// if ( c->neighbor(i) != n ) return false;
|
|
// if ( n->neighbor(j) != c ) return false;
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
|
|
if ( (c==n) && (i==j) ) return true;
|
|
|
|
int j1,j2,j3;
|
|
return( n->has_vertex( c->vertex((i+1)&3), j1 ) &&
|
|
n->has_vertex( c->vertex((i+2)&3), j2 ) &&
|
|
n->has_vertex( c->vertex((i+3)&3), j3 ) &&
|
|
( j1+j2+j3+j == 6 ) );
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
are_equal(const Facet & f, const Facet & g) const
|
|
{
|
|
return are_equal(f.first, f.second, g.first, g.second);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
are_equal(const Facet & f, Cell_handle n, int j) const
|
|
{
|
|
return are_equal(f.first, f.second, n, j);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
flip( Cell_handle c, int i )
|
|
// returns false if the facet is not flippable
|
|
// true other wise and
|
|
// flips facet i of cell c
|
|
// c will be replaced by one of the new cells
|
|
{
|
|
CGAL_triangulation_precondition( (dimension() == 3) && (0<=i) && (i<4)
|
|
&& (number_of_vertices() > 6) );
|
|
CGAL_triangulation_expensive_precondition( is_cell(c) );
|
|
|
|
Cell_handle n = c->neighbor(i);
|
|
int in = n->index(c);
|
|
|
|
// checks that the facet is flippable,
|
|
// ie the future edge does not already exist
|
|
std::set<Vertex_handle> setc;
|
|
incident_vertices( c->vertex(i), setc );
|
|
if ( setc.find( n->vertex(in) ) != setc.end() ) return false;
|
|
|
|
flip_really(c,i,n,in);
|
|
return true;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
flip_flippable( Cell_handle c, int i )
|
|
// flips facet i of cell c
|
|
// c will be replaced by one of the new cells
|
|
{
|
|
CGAL_triangulation_precondition( (dimension() == 3) && (0<=i) && (i<4)
|
|
&& (number_of_vertices() > 6) );
|
|
CGAL_triangulation_expensive_precondition( is_cell(c) );
|
|
|
|
Cell_handle n = c->neighbor(i);
|
|
int in = n->index(c);
|
|
|
|
// checks that the facet is flippable,
|
|
// ie the future edge does not already exist
|
|
typedef std::set<Vertex_handle> set_of_vertices;
|
|
CGAL_triangulation_expensive_precondition_code( set_of_vertices setc; );
|
|
CGAL_triangulation_expensive_precondition_code
|
|
( incident_vertices( c->vertex(i), setc ); );
|
|
CGAL_triangulation_expensive_precondition
|
|
( ( setc.find( n->vertex(in) ) == setc.end() ) );
|
|
|
|
flip_really(c,i,n,in);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
inline
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
flip_really( Cell_handle c, int i, Cell_handle n, int in )
|
|
// private - used by flip and flip_flippable
|
|
{
|
|
int i1 = (i+1)&3;
|
|
int i2 = (i+2)&3;
|
|
int i3 = (i+3)&3;
|
|
|
|
int in1 = n->index(c->vertex(i1));
|
|
int in2 = n->index(c->vertex(i2));
|
|
int in3 = n->index(c->vertex(i3));
|
|
|
|
set_adjacency(c, n->neighbor(in3), i, n->neighbor(in3)->index(n));
|
|
c->set_vertex( i3, n->vertex(in) );
|
|
|
|
set_adjacency(n, c->neighbor(i1), in, c->neighbor(i1)->index(c));
|
|
n->set_vertex( in1, c->vertex(i) );
|
|
|
|
Cell_handle cnew = create_cell(c->vertex(i), c->vertex(i1),
|
|
n->vertex(in), n->vertex(in3));
|
|
|
|
set_adjacency(cnew, n->neighbor(in2), 0, n->neighbor(in2)->index(n));
|
|
set_adjacency(cnew, n, 1, in2);
|
|
set_adjacency(cnew, c->neighbor(i2), 2, c->neighbor(i2)->index(c));
|
|
set_adjacency(cnew, c, 3, i2);
|
|
set_adjacency(c, n, i1, in3);
|
|
|
|
if (i&1 != 0)
|
|
change_orientation(cnew);
|
|
|
|
c->vertex(i1)->set_cell(cnew);
|
|
c->vertex(i2)->set_cell(c);
|
|
n->vertex(in3)->set_cell(n);
|
|
// to be implemented : 2d case
|
|
// CGAL_triangulation_precondition( (0<=i) && (i<3) );
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
flip( Cell_handle c, int i, int j )
|
|
// returns false if the edge is not flippable
|
|
// true otherwise and
|
|
// flips edge i,j of cell c
|
|
// c will be deleted
|
|
{
|
|
CGAL_triangulation_precondition( (dimension() == 3)
|
|
&& (0<=i) && (i<4)
|
|
&& (0<=j) && (j<4)
|
|
&& ( i != j )
|
|
&& (number_of_vertices() > 6) );
|
|
CGAL_triangulation_expensive_precondition( is_cell(c) );
|
|
|
|
// checks that the edge is flippable ie degree 3
|
|
int degree = 0;
|
|
Cell_circulator ccir = incident_cells(c,i,j);
|
|
Cell_circulator cdone = ccir;
|
|
do {
|
|
++degree;
|
|
++ccir;
|
|
} while ( ccir != cdone );
|
|
|
|
if ( degree != 3 ) return false;
|
|
|
|
int next = next_around_edge(i,j);
|
|
Cell_handle c1 = c->neighbor( next );
|
|
Vertex_handle v1 = c->vertex( next ); // will become vertex of c1
|
|
int i1 = c1->index( c->vertex(i) );
|
|
int j1 = c1->index( c->vertex(j) );
|
|
|
|
int next1 = next_around_edge(i1,j1);
|
|
Cell_handle c2 = c1->neighbor( next1 );
|
|
Vertex_handle v2 = c1->vertex( next1 ); // will become vertex of c2
|
|
int i2 = c2->index( c->vertex(i) );
|
|
int j2 = c2->index( c->vertex(j) );
|
|
|
|
int next2 = next_around_edge(i2,j2);
|
|
Vertex_handle v3 = c2->vertex( next2 );
|
|
|
|
// checks that the edge is flippable,
|
|
// is the future cells do not already exist
|
|
if ( is_cell(v1,v2,v3,c->vertex(i)) ) return false;
|
|
if ( is_cell(v1,v2,v3,c->vertex(j)) ) return false;
|
|
|
|
flip_really(c,i,j,c1,v1,i1,j1,next1,c2,v2,i2,j2,next2,v3);
|
|
|
|
return true;
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
flip_flippable( Cell_handle c, int i, int j )
|
|
// flips edge i,j of cell c
|
|
// c will be deleted
|
|
{
|
|
CGAL_triangulation_precondition( (dimension() == 3)
|
|
&& (0<=i) && (i<4)
|
|
&& (0<=j) && (j<4)
|
|
&& ( i != j )
|
|
&& (number_of_vertices() > 6) );
|
|
CGAL_triangulation_expensive_precondition( is_cell(c) );
|
|
|
|
// checks that the edge is flippable ie degree 3
|
|
CGAL_triangulation_precondition_code( int degree = 0; );
|
|
CGAL_triangulation_precondition_code
|
|
( Cell_circulator ccir = incident_cells(c,i,j); );
|
|
CGAL_triangulation_precondition_code( Cell_circulator cdone = ccir; );
|
|
CGAL_triangulation_precondition_code( do {
|
|
++degree;
|
|
++ccir;
|
|
} while ( ccir != cdone ); );
|
|
|
|
CGAL_triangulation_precondition( degree == 3 );
|
|
|
|
int next = next_around_edge(i,j);
|
|
Cell_handle c1 = c->neighbor( next );
|
|
Vertex_handle v1 = c->vertex( next ); // will become vertex of c1
|
|
int i1 = c1->index( c->vertex(i) );
|
|
int j1 = c1->index( c->vertex(j) );
|
|
|
|
int next1 = next_around_edge(i1,j1);
|
|
Cell_handle c2 = c1->neighbor( next1 );
|
|
Vertex_handle v2 = c1->vertex( next1 ); // will become vertex of c2
|
|
int i2 = c2->index( c->vertex(i) );
|
|
int j2 = c2->index( c->vertex(j) );
|
|
|
|
int next2 = next_around_edge(i2,j2);
|
|
Vertex_handle v3 = c2->vertex( next2 );
|
|
|
|
// checks that the edge is flippable,
|
|
// is the future cells do not already exist
|
|
CGAL_triangulation_expensive_precondition( !is_cell(v1,v2,v3,c->vertex(i)) );
|
|
CGAL_triangulation_expensive_precondition( !is_cell(v1,v2,v3,c->vertex(j)) );
|
|
|
|
flip_really(c,i,j,c1,v1,i1,j1,next1,c2,v2,i2,j2,next2,v3);
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
inline
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
flip_really( Cell_handle c, int i, int j,
|
|
Cell_handle c1, Vertex_handle v1, int i1, int j1, int next1,
|
|
Cell_handle c2, Vertex_handle v2, int i2, int j2, int next2,
|
|
Vertex_handle v3 )
|
|
{
|
|
c->vertex(i)->set_cell(c1);
|
|
c->vertex(j)->set_cell(c2);
|
|
|
|
c1->set_vertex( j1, v1 );
|
|
v1->set_cell(c1);
|
|
c2->set_vertex( i2, v2 );
|
|
v2->set_cell(c2);
|
|
|
|
set_adjacency(c1,c2->neighbor(j2), next1, c2->neighbor(j2)->index(c2));
|
|
set_adjacency(c2,c1->neighbor(i1),c2->index(v1),c1->neighbor(i1)->index(c1));
|
|
|
|
set_adjacency(c1, c2, i1, j2);
|
|
|
|
set_adjacency(c1, c->neighbor(j), 6-i1-j1-next1, c->neighbor(j)->index(c));
|
|
set_adjacency(c2, c->neighbor(i), next2, c->neighbor(i)->index(c));
|
|
|
|
v3->set_cell( c2 );
|
|
|
|
delete_cell( c );
|
|
}
|
|
|
|
template < class Vb, class Cb >
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
read_cells(std::istream& is, std::map< int, Vertex_handle > &V,
|
|
int & m, std::map< int, Cell_handle > &C)
|
|
{
|
|
// creation of the cells and neighbors
|
|
switch (dimension()) {
|
|
case 3:
|
|
case 2:
|
|
case 1:
|
|
{
|
|
is >> m;
|
|
|
|
for(int i = 0; i < m; i++) {
|
|
Cell_handle c = create_cell();
|
|
for (int k=0; k<=dimension(); ++k) {
|
|
int ik;
|
|
is >> ik;
|
|
c->set_vertex(k, V[ik]);
|
|
V[ik]->set_cell(c);
|
|
}
|
|
C[i] = c;
|
|
}
|
|
for(int j = 0; j < m; j++) {
|
|
Cell_handle c = C[j];
|
|
for (int k=0; k<=dimension(); ++k) {
|
|
int ik;
|
|
is >> ik;
|
|
c->set_neighbor(k, C[ik]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 0:
|
|
{
|
|
m = 2;
|
|
|
|
// CGAL_triangulation_assertion( n == 2 );
|
|
for (int i=0; i < 2; i++) {
|
|
Cell_handle c = create_cell(V[i], NULL, NULL, NULL);
|
|
C[i] = c;
|
|
V[i]->set_cell(c);
|
|
}
|
|
for (int j=0; j < 2; j++) {
|
|
Cell_handle c = C[j];
|
|
c->set_neighbor(0, C[1-j]);
|
|
}
|
|
break;
|
|
}
|
|
case -1:
|
|
{
|
|
m = 1;
|
|
// CGAL_triangulation_assertion( n == 1 );
|
|
Cell_handle c = create_cell(V[0], NULL, NULL, NULL);
|
|
C[0] = c;
|
|
V[0]->set_cell(c);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template < class Vb, class Cb>
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
print_cells(std::ostream& os, std::map<Vertex_handle, int> &V ) const
|
|
{
|
|
std::map<Cell_handle, int > C;
|
|
|
|
int i = 0;
|
|
int j;
|
|
int m;
|
|
|
|
switch ( dimension() ) {
|
|
case 3:
|
|
{
|
|
m = number_of_cells();
|
|
os << m;
|
|
if(is_ascii(os))
|
|
os << std::endl;
|
|
|
|
// write the cells
|
|
Cell_iterator it;
|
|
for(it = cells_begin(); it != cells_end(); ++it) {
|
|
C[&(*it)] = i++;
|
|
for(j = 0; j < 4; j++){
|
|
os << V[it->vertex(j)];
|
|
if(is_ascii(os)) {
|
|
if ( j==3 )
|
|
os << std::endl;
|
|
else
|
|
os << ' ';
|
|
}
|
|
}
|
|
}
|
|
CGAL_triangulation_assertion( i == m );
|
|
|
|
// write the neighbors
|
|
for(it = cells_begin(); it != cells_end(); ++it) {
|
|
for (j = 0; j < 4; j++) {
|
|
os << C[it->neighbor(j)];
|
|
if(is_ascii(os)){
|
|
if(j==3)
|
|
os << std::endl;
|
|
else
|
|
os << ' ';
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
m = number_of_facets();
|
|
os << m;
|
|
if(is_ascii(os))
|
|
os << std::endl;
|
|
|
|
// write the facets
|
|
Facet_iterator it;
|
|
for(it = facets_begin(); it != facets_end(); ++it) {
|
|
C[(*it).first] = i++;
|
|
for(j = 0; j < 3; j++){
|
|
os << V[(*it).first->vertex(j)];
|
|
if(is_ascii(os)) {
|
|
if ( j==2 )
|
|
os << std::endl;
|
|
else
|
|
os << ' ';
|
|
}
|
|
}
|
|
}
|
|
CGAL_triangulation_assertion( i == m );
|
|
|
|
// write the neighbors
|
|
for(it = facets_begin(); it != facets_end(); ++it) {
|
|
for (j = 0; j < 3; j++) {
|
|
os << C[(*it).first->neighbor(j)];
|
|
if(is_ascii(os)){
|
|
if(j==2)
|
|
os << std::endl;
|
|
else
|
|
os << ' ';
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
m = number_of_edges();
|
|
os << m;
|
|
if(is_ascii(os))
|
|
os << std::endl;
|
|
|
|
// write the edges
|
|
Edge_iterator it;
|
|
for(it = edges_begin(); it != edges_end(); ++it) {
|
|
C[(*it).first] = i++;
|
|
for(j = 0; j < 2; j++){
|
|
os << V[(*it).first->vertex(j)];
|
|
if(is_ascii(os)) {
|
|
if ( j==1 )
|
|
os << std::endl;
|
|
else
|
|
os << ' ';
|
|
}
|
|
}
|
|
}
|
|
CGAL_triangulation_assertion( i == m );
|
|
|
|
// write the neighbors
|
|
for(it = edges_begin(); it != edges_end(); ++it) {
|
|
for (j = 0; j < 2; j++) {
|
|
os << C[(*it).first->neighbor(j)];
|
|
if(is_ascii(os)){
|
|
if(j==1)
|
|
os << std::endl;
|
|
else
|
|
os << ' ';
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
typename Triangulation_data_structure_3<Vb,Cb>::Vertex_handle
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
insert_in_cell( Vertex_handle v, Cell_handle c )
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
CGAL_triangulation_precondition( (c != NULL) );
|
|
CGAL_triangulation_expensive_precondition( is_cell(c) );
|
|
|
|
if ( v == NULL )
|
|
v = create_vertex();
|
|
|
|
Vertex_handle v0 = c->vertex(0);
|
|
Vertex_handle v1 = c->vertex(1);
|
|
Vertex_handle v2 = c->vertex(2);
|
|
Vertex_handle v3 = c->vertex(3);
|
|
|
|
Cell_handle n1 = c->neighbor(1);
|
|
Cell_handle n2 = c->neighbor(2);
|
|
Cell_handle n3 = c->neighbor(3);
|
|
|
|
// c will be modified to have v,v1,v2,v3 as vertices
|
|
Cell_handle c3 = create_cell(v0,v1,v2,v);
|
|
Cell_handle c2 = create_cell(v0,v1,v,v3);
|
|
Cell_handle c1 = create_cell(v0,v,v2,v3);
|
|
|
|
set_adjacency(c3, c, 0, 3);
|
|
set_adjacency(c2, c, 0, 2);
|
|
set_adjacency(c1, c, 0, 1);
|
|
|
|
set_adjacency(c2, c3, 3, 2);
|
|
set_adjacency(c1, c3, 3, 1);
|
|
set_adjacency(c1, c2, 2, 1);
|
|
|
|
set_adjacency(n1, c1, n1->index(c), 1);
|
|
set_adjacency(n2, c2, n2->index(c), 2);
|
|
set_adjacency(n3, c3, n3->index(c), 3);
|
|
|
|
c->set_vertex(0,v);
|
|
|
|
v0->set_cell(c1);
|
|
v->set_cell(c);
|
|
set_number_of_vertices(number_of_vertices() +1);
|
|
|
|
return v;
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
typename Triangulation_data_structure_3<Vb,Cb>::Vertex_handle
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
insert_in_facet(Vertex_handle v, Cell_handle c, int i)
|
|
{ // inserts v in the facet opposite to vertex i of cell c
|
|
|
|
CGAL_triangulation_precondition( (c != NULL));
|
|
CGAL_triangulation_precondition( dimension() >= 2 );
|
|
|
|
if ( v == NULL )
|
|
v = create_vertex();
|
|
|
|
switch ( dimension() ) {
|
|
|
|
case 3:
|
|
{
|
|
CGAL_triangulation_expensive_precondition( is_cell(c) );
|
|
CGAL_triangulation_precondition( i == 0 || i == 1 ||
|
|
i == 2 || i == 3 );
|
|
// c will be modified to have v replacing vertex(i+3)
|
|
int i1,i2,i3;
|
|
|
|
if ( (i&1) == 0 ) {
|
|
i1=(i+1)&3; i2=(i+2)&3; i3=6-i-i1-i2;
|
|
}
|
|
else {
|
|
i1=(i+1)&3; i2=(i+3)&3; i3=6-i-i1-i2;
|
|
}
|
|
// i,i1,i2,i3 is well oriented
|
|
// so v will "replace" the vertices in this order
|
|
// when creating the new cells one after another from c
|
|
|
|
Vertex_handle vi=c->vertex(i);
|
|
Vertex_handle v1=c->vertex(i1);
|
|
Vertex_handle v2=c->vertex(i2);
|
|
Vertex_handle v3=c->vertex(i3);
|
|
|
|
// new cell with v in place of i1
|
|
Cell_handle nc = c->neighbor(i1);
|
|
Cell_handle cnew1 = create_cell(vi,v,v2,v3);
|
|
set_adjacency(cnew1, nc, 1, nc->index(c));
|
|
set_adjacency(cnew1, c, 3, i1);
|
|
|
|
v3->set_cell(cnew1);
|
|
|
|
// new cell with v in place of i2
|
|
nc = c->neighbor(i2);
|
|
Cell_handle cnew2 = create_cell(vi,v1,v,v3);
|
|
set_adjacency(cnew2, nc, 2, nc->index(c));
|
|
set_adjacency(cnew2, c, 3, i2);
|
|
set_adjacency(cnew1, cnew2, 2, 1);
|
|
|
|
// v replaces i3 in c
|
|
c->set_vertex(i3,v);
|
|
|
|
// other side of facet containing v
|
|
Cell_handle d = c->neighbor(i);
|
|
int j = d->index(c);
|
|
int j1=d->index(v1);// triangulation supposed to be valid
|
|
int j2=d->index(v2);
|
|
int j3=6-j-j1-j2;
|
|
// then the orientation of j,j1,j2,j3 depends on the parity
|
|
// of i-j
|
|
|
|
// new cell with v in place of j1
|
|
Cell_handle nd = d->neighbor(j1);
|
|
Cell_handle dnew1 = create_cell(d->vertex(j),v,v3,v2);
|
|
set_adjacency(dnew1, nd, 1, nd->index(d));
|
|
set_adjacency(dnew1, d, 2, j1);
|
|
set_adjacency(dnew1, cnew1, 0, 0);
|
|
|
|
// new cell with v in place of j2
|
|
nd = d->neighbor(j2);
|
|
Cell_handle dnew2 = create_cell(d->vertex(j),v1,v3,v);
|
|
|
|
set_adjacency(dnew2, nd, 3, nd->index(d));
|
|
set_adjacency(dnew2, d, 2, j2);
|
|
set_adjacency(dnew2, cnew2, 0, 0);
|
|
set_adjacency(dnew1, dnew2, 3, 1);
|
|
|
|
// v replaces i3 in d
|
|
d->set_vertex(j3,v);
|
|
v->set_cell(d);
|
|
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
CGAL_triangulation_expensive_precondition( is_facet(c,i) );
|
|
Cell_handle n = c->neighbor(2);
|
|
Cell_handle cnew = create_cell(c->vertex(0),c->vertex(1),v,NULL);
|
|
set_adjacency(cnew, n, 2, n->index(c));
|
|
set_adjacency(cnew, c, 0, 2);
|
|
c->vertex(0)->set_cell(cnew);
|
|
|
|
n = c->neighbor(1);
|
|
Cell_handle dnew = create_cell(c->vertex(0),v,c->vertex(2),NULL);
|
|
set_adjacency(dnew, n, 1, n->index(c));
|
|
set_adjacency(dnew, c, 0, 1);
|
|
set_adjacency(dnew, cnew, 2, 1);
|
|
|
|
c->set_vertex(0,v);
|
|
v->set_cell(c);
|
|
break;
|
|
}
|
|
}
|
|
set_number_of_vertices(number_of_vertices() +1);
|
|
|
|
return v;
|
|
}
|
|
// end insert_in_facet
|
|
|
|
template <class Vb, class Cb >
|
|
typename Triangulation_data_structure_3<Vb,Cb>::Vertex_handle
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
insert_in_edge(Vertex_handle v, Cell_handle c, int i, int j)
|
|
// inserts v in the edge of cell c with vertices i and j
|
|
{
|
|
CGAL_triangulation_precondition( c != NULL );
|
|
CGAL_triangulation_precondition( i != j );
|
|
CGAL_triangulation_precondition( dimension() >= 1 );
|
|
|
|
if ( v == NULL )
|
|
v = create_vertex();
|
|
|
|
switch ( dimension() ) {
|
|
case 3:
|
|
{
|
|
CGAL_triangulation_expensive_precondition( is_cell(c) );
|
|
CGAL_triangulation_precondition( i>=0 && i<=3 && j>=0 && j<=3 );
|
|
|
|
std::vector<Cell_handle > cells;
|
|
std::vector<Facet> facets;
|
|
cells.reserve(32);
|
|
facets.reserve(64);
|
|
const Vertex_handle vi=c->vertex(i);
|
|
const Vertex_handle vj=c->vertex(j);
|
|
Cell_circulator ccir = incident_cells(c, i, j);
|
|
do {
|
|
Cell_handle cc = ccir->handle();
|
|
cells.push_back(cc);
|
|
facets.push_back(Facet(cc, cc->index(vi)));
|
|
facets.push_back(Facet(cc, cc->index(vj)));
|
|
++ccir;
|
|
} while (ccir->handle() != c);
|
|
|
|
star_hole_3(v, facets.begin(), facets.end(), cells.begin(), cells.end());
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
CGAL_triangulation_expensive_precondition( is_edge(c,i,j) );
|
|
int k=3-i-j; // index of the third vertex of the facet
|
|
Cell_handle d = c->neighbor(k);
|
|
int kd = d->index(c);
|
|
int id = d->index(c->vertex(i));
|
|
int jd = d->index(c->vertex(j));
|
|
|
|
Cell_handle cnew = create_cell();
|
|
cnew->set_vertex(i,c->vertex(i));
|
|
c->vertex(i)->set_cell(cnew);
|
|
cnew->set_vertex(j,v);
|
|
cnew->set_vertex(k,c->vertex(k));
|
|
c->set_vertex(i,v);
|
|
|
|
Cell_handle dnew = create_cell();
|
|
dnew->set_vertex(id,d->vertex(id));
|
|
// d->vertex(id)->cell() is cnew OK
|
|
dnew->set_vertex(jd,v);
|
|
dnew->set_vertex(kd,d->vertex(kd));
|
|
d->set_vertex(id,v);
|
|
|
|
Cell_handle nj = c->neighbor(j);
|
|
set_adjacency(cnew, c, i, j);
|
|
set_adjacency(cnew, nj, j, nj->index(c));
|
|
|
|
nj = d->neighbor(jd);
|
|
set_adjacency(dnew, d, id, jd);
|
|
set_adjacency(dnew, nj, jd, nj->index(d));
|
|
|
|
set_adjacency(cnew, dnew, k, kd);
|
|
|
|
v->set_cell(cnew);
|
|
break;
|
|
}
|
|
|
|
case 1:
|
|
{
|
|
CGAL_triangulation_expensive_precondition( is_edge(c,i,j) );
|
|
Cell_handle cnew = create_cell(v,c->vertex(1),NULL,NULL);
|
|
c->vertex(1)->set_cell(cnew);
|
|
c->set_vertex(1,v);
|
|
set_adjacency(cnew, c->neighbor(0), 0, 1);
|
|
set_adjacency(cnew, c, 1, 0);
|
|
|
|
v->set_cell(cnew);
|
|
break;
|
|
}
|
|
}
|
|
set_number_of_vertices(number_of_vertices() +1);
|
|
|
|
return v;
|
|
}// end insert_in_edge
|
|
|
|
template <class Vb, class Cb >
|
|
typename Triangulation_data_structure_3<Vb,Cb>::Vertex_handle
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
insert_increase_dimension(Vertex_handle v, // new vertex
|
|
Vertex_handle star,
|
|
bool reorient)
|
|
// star = vertex from which we triangulate the facet of the
|
|
// incremented dimension
|
|
// ( geometrically : star = infinite vertex )
|
|
// = Null only used to insert the 1st vertex (dimension -2 to dimension -1)
|
|
// changes the dimension
|
|
// if (reorient) the orientation of the cells is modified
|
|
{
|
|
CGAL_triangulation_precondition( dimension() < 3);
|
|
|
|
if ( v == NULL )
|
|
v = create_vertex();
|
|
|
|
int dim = dimension();
|
|
if (dim != -2) {
|
|
CGAL_triangulation_precondition( star != NULL );
|
|
// In this case, this precondition is not relatively expensive.
|
|
CGAL_triangulation_precondition( is_vertex(star) );
|
|
}
|
|
|
|
// this is set now, so that it becomes allowed to reorient
|
|
// new facets or cells by iterating on them (otherwise the
|
|
// dimension is too small)
|
|
set_number_of_vertices( number_of_vertices()+1 );
|
|
set_dimension( dimension()+1 );
|
|
|
|
switch ( dim ) {
|
|
case -2:
|
|
// insertion of the first vertex
|
|
// ( geometrically : infinite vertex )
|
|
{
|
|
Cell_handle c = create_cell( v, NULL, NULL, NULL);
|
|
v->set_cell(c);
|
|
break;
|
|
}
|
|
|
|
case -1:
|
|
// insertion of the second vertex
|
|
// ( geometrically : first finite vertex )
|
|
{
|
|
Cell_handle d = create_cell( v, NULL, NULL, NULL);
|
|
v->set_cell(d);
|
|
set_adjacency(d, star->cell(), 0, 0);
|
|
break;
|
|
}
|
|
|
|
case 0:
|
|
// insertion of the third vertex
|
|
// ( geometrically : second finite vertex )
|
|
{
|
|
Cell_handle c = star->cell();
|
|
Cell_handle d = c->neighbor(0);
|
|
|
|
if (reorient) {
|
|
c->set_vertex(0,d->vertex(0));
|
|
c->set_vertex(1,star);
|
|
d->set_vertex(1,d->vertex(0));
|
|
d->set_vertex(0,v);
|
|
set_adjacency(c, d, 1, 0);
|
|
Cell_handle e = create_cell( star, v, NULL, NULL);
|
|
set_adjacency(e, d, 0, 1);
|
|
set_adjacency(e, c, 1, 0);
|
|
}
|
|
else {
|
|
c->set_vertex(1,d->vertex(0));
|
|
d->set_vertex(1,v);
|
|
d->set_neighbor(1,c);
|
|
Cell_handle e = create_cell( v, star, NULL, NULL);
|
|
set_adjacency(e, c, 0, 1);
|
|
set_adjacency(e, d, 1, 0);
|
|
}
|
|
|
|
v->set_cell(d);
|
|
break;
|
|
}
|
|
|
|
case 1:
|
|
// general case : 4th vertex ( geometrically : 3rd finite vertex )
|
|
// degenerate cases geometrically : 1st non collinear vertex
|
|
{
|
|
Cell_handle c = star->cell();
|
|
int i = c->index(star); // i== 0 or 1
|
|
int j = (1-i);
|
|
Cell_handle d = c->neighbor(j);
|
|
|
|
c->set_vertex(2,v);
|
|
|
|
Cell_handle e = c->neighbor(i);
|
|
Cell_handle cnew = c;
|
|
Cell_handle enew=NULL;
|
|
|
|
while( e != d ){
|
|
enew = create_cell( );
|
|
enew->set_vertex(i,e->vertex(j));
|
|
enew->set_vertex(j,e->vertex(i));
|
|
enew->set_vertex(2,star);
|
|
|
|
set_adjacency(enew, cnew, i, j);
|
|
// false at the first iteration of the loop where it should
|
|
// be neighbor 2
|
|
// it is corrected after the loop
|
|
set_adjacency(enew, e, 2, 2);
|
|
// neighbor j will be set during next iteration of the loop
|
|
|
|
e->set_vertex(2,v);
|
|
|
|
e = e->neighbor(i);
|
|
cnew = enew;
|
|
}
|
|
|
|
d->set_vertex(2,v);
|
|
set_adjacency(enew, d, j, 2);
|
|
|
|
// corrections for star->cell() :
|
|
c = star->cell();
|
|
c->set_neighbor(2,c->neighbor(i)->neighbor(2));
|
|
c->set_neighbor(j,d);
|
|
|
|
v->set_cell(d);
|
|
|
|
if (reorient) {
|
|
// reorientation of all the cells
|
|
for (Facet_iterator fit = facets_begin(); fit != facets_end(); ++fit)
|
|
change_orientation((*fit).first);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 2:
|
|
// general case : 5th vertex ( geometrically : 4th finite vertex )
|
|
// degenerate cases : geometrically 1st non coplanar vertex
|
|
{
|
|
// used to store the new cells, in order to be able to traverse only
|
|
// them to find the missing neighbors.
|
|
std::vector<Cell_handle > new_cells;
|
|
new_cells.reserve(16);
|
|
|
|
Cell_iterator it = cells_begin();
|
|
// allowed since the dimension has already been set to 3
|
|
|
|
v->set_cell(&(*it)); // ok since there is at least one ``cell''
|
|
for(; it != cells_end(); ++it) {
|
|
// Here we must be careful since we create_cells in a loop controlled
|
|
// by an iterator. So we first take care of the cells newly created
|
|
// by the following test :
|
|
if (it->neighbor(0) == NULL)
|
|
continue;
|
|
it->set_vertex(3,v);
|
|
if ( ! it->has_vertex(star) ) {
|
|
Cell_handle cnew = create_cell( it->vertex(0), it->vertex(2),
|
|
it->vertex(1), star);
|
|
set_adjacency(cnew, it->handle(), 3, 3);
|
|
new_cells.push_back(cnew);
|
|
}
|
|
}
|
|
|
|
// traversal of the new cells only, to add missing neighbors
|
|
for(typename std::vector<Cell_handle>::iterator ncit = new_cells.begin();
|
|
ncit != new_cells.end(); ++ncit) {
|
|
Cell_handle n = (*ncit)->neighbor(3); // opposite to star
|
|
for ( int i=0; i<3; i++ ) {
|
|
int j;
|
|
if ( i==0 ) j=0;
|
|
else j=3-i; // vertex 1 and vertex 2 are always switched when
|
|
// creating a new cell (see above)
|
|
Cell_handle c = n->neighbor(i)->neighbor(3);
|
|
if ( c != NULL ) {
|
|
// i.e. star is not a vertex of n->neighbor(i)
|
|
(*ncit)->set_neighbor(j, c);
|
|
// opposite relation will be set when ncit arrives on c
|
|
// this avoids to look for the correct index
|
|
// and to test whether *ncit already has neighbor i
|
|
}
|
|
else {
|
|
// star is a vertex of n->neighbor(i)
|
|
set_adjacency(*ncit, n->neighbor(i), j, 3);//neighbor opposite to v
|
|
}
|
|
}
|
|
}
|
|
|
|
// reorientation of all the cells
|
|
if (reorient)
|
|
for(it = cells_begin(); it != cells_end(); ++it)
|
|
change_orientation(it->handle());
|
|
}
|
|
}// end switch
|
|
|
|
return v;
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
incident_cells(Vertex_handle v, std::set<Cell_handle> & cells,
|
|
Cell_handle c) const
|
|
{
|
|
CGAL_triangulation_precondition( v != NULL );
|
|
CGAL_triangulation_expensive_precondition( is_vertex(v) );
|
|
|
|
if ( dimension() < 3 )
|
|
return;
|
|
|
|
if ( c == NULL )
|
|
c = v->cell();
|
|
else
|
|
CGAL_triangulation_precondition( c->has_vertex(v) );
|
|
|
|
if ( cells.find( c ) != cells.end() )
|
|
return; // c was already found
|
|
|
|
cells.insert( c );
|
|
|
|
for ( int j=0; j<4; j++ )
|
|
if ( j != c->index(v) )
|
|
incident_cells( v, cells, c->neighbor(j) );
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
incident_vertices(Vertex_handle v, std::set<Vertex_handle> & vertices,
|
|
Cell_handle c) const
|
|
{
|
|
CGAL_triangulation_precondition( v != NULL );
|
|
CGAL_triangulation_expensive_precondition( is_vertex(v) );
|
|
|
|
if ( number_of_vertices() < 2 )
|
|
return;
|
|
|
|
if ( c == NULL )
|
|
c = v->cell();
|
|
else
|
|
CGAL_triangulation_precondition( c->has_vertex(v) );
|
|
|
|
int d = dimension();
|
|
int j;
|
|
int found = 0;
|
|
for ( j=0; j <= d; j++ ) {
|
|
if ( j != c->index(v) ) {
|
|
if ( vertices.find( c->vertex(j) ) == vertices.end() )
|
|
vertices.insert( c->vertex(j) );
|
|
else
|
|
found++; // c->vertex(j) was already found
|
|
}
|
|
}
|
|
if ( found == 3 )
|
|
return; // c was already visited
|
|
|
|
for ( j=0; j <= d; j++ )
|
|
if ( j != c->index(v) )
|
|
incident_vertices( v, vertices, c->neighbor(j) );
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
is_valid(bool verbose, int level ) const
|
|
{
|
|
switch ( dimension() ) {
|
|
case 3:
|
|
{
|
|
int vertex_count;
|
|
if ( ! count_vertices(vertex_count,verbose,level) )
|
|
return false;
|
|
if ( number_of_vertices() != vertex_count ) {
|
|
if (verbose)
|
|
std::cerr << "wrong number of vertices" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
int cell_count;
|
|
if ( ! count_cells(cell_count,verbose,level) )
|
|
return false;
|
|
int edge_count;
|
|
if ( ! count_edges(edge_count,verbose,level) )
|
|
return false;
|
|
int facet_count;
|
|
if ( ! count_facets(facet_count,verbose,level) )
|
|
return false;
|
|
|
|
// Euler relation
|
|
if ( cell_count - facet_count + edge_count - vertex_count != 0 ) {
|
|
if (verbose)
|
|
std::cerr << "Euler relation unsatisfied" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
int vertex_count;
|
|
if ( ! count_vertices(vertex_count,verbose,level) )
|
|
return false;
|
|
if ( number_of_vertices() != vertex_count ) {
|
|
if (verbose)
|
|
std::cerr << "false number of vertices" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
int edge_count;
|
|
if ( ! count_edges(edge_count,verbose,level) )
|
|
return false;
|
|
// Euler for edges
|
|
if ( edge_count != 3 * vertex_count - 6 ) {
|
|
if (verbose)
|
|
std::cerr << "Euler relation unsatisfied - edges/vertices"
|
|
<< std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
int facet_count;
|
|
if ( ! count_facets(facet_count,verbose,level) )
|
|
return false;
|
|
// Euler for facets
|
|
if ( facet_count != 2 * vertex_count - 4 ) {
|
|
if (verbose)
|
|
std::cerr << "Euler relation unsatisfied - facets/vertices"
|
|
<< std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
int vertex_count;
|
|
if ( ! count_vertices(vertex_count,verbose,level) )
|
|
return false;
|
|
if ( number_of_vertices() != vertex_count ) {
|
|
if (verbose)
|
|
std::cerr << "false number of vertices" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
int edge_count;
|
|
if ( ! count_edges(edge_count,verbose,level) )
|
|
return false;
|
|
// Euler for edges
|
|
if ( edge_count != vertex_count ) {
|
|
if (verbose)
|
|
std::cerr << "false number of edges" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
case 0:
|
|
{
|
|
if ( number_of_vertices() < 2 ) {
|
|
if (verbose)
|
|
std::cerr << "less than 2 vertices but dimension 0" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
// no break; continue
|
|
}
|
|
case -1:
|
|
{
|
|
if ( number_of_vertices() < 1 ) {
|
|
if (verbose)
|
|
std::cerr << "no vertex but dimension -1" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
// vertex count
|
|
int vertex_count;
|
|
if ( ! count_vertices(vertex_count,verbose,level) )
|
|
return false;
|
|
if ( number_of_vertices() != vertex_count ) {
|
|
if (verbose)
|
|
std::cerr << "false number of vertices" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
} // end switch
|
|
if (verbose)
|
|
std::cerr << "valid data structure" << std::endl;
|
|
return true;
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
typename Triangulation_data_structure_3<Vb,Cb>::Vertex_handle
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
copy_tds(const Tds & tds, Vertex_handle vert )
|
|
// returns the new vertex corresponding to vert in the new tds
|
|
{
|
|
CGAL_triangulation_expensive_precondition( vert == NULL
|
|
|| tds.is_vertex(vert) );
|
|
|
|
clear();
|
|
|
|
int n = tds.number_of_vertices();
|
|
set_number_of_vertices(n);
|
|
set_dimension(tds.dimension());
|
|
|
|
if (n == 0)
|
|
return vert;
|
|
|
|
// Create the vertices.
|
|
// the vertices must be indexed by their order of creation so
|
|
// that when reread from file, the orders of vertices are the
|
|
// same - important for remove
|
|
std::vector<Vertex_handle> TV(n);
|
|
int i = 0;
|
|
|
|
for (Vertex_iterator vit = tds.vertices_begin();
|
|
vit != tds.vertices_end(); ++vit)
|
|
TV[i++] = vit->handle();
|
|
|
|
CGAL_triangulation_assertion( i == n );
|
|
std::sort(TV.begin(), TV.end(),
|
|
Vertex_tds_compare_order_of_creation<Vertex_handle>());
|
|
|
|
std::map< Vertex_handle, Vertex_handle > V;
|
|
std::map< Cell_handle, Cell_handle > F;
|
|
|
|
for (i=0; i <= n-1; i++) {
|
|
V[ TV[i] ] = create_vertex();
|
|
*V[ TV[i] ] = *TV[i];
|
|
}
|
|
|
|
// Create the cells.
|
|
for (Cell_iterator cit = tds.cell_container().begin();
|
|
cit != tds.cells_end(); ++cit) {
|
|
F[cit->handle()] = create_cell(cit->handle());
|
|
F[cit->handle()]->set_vertices(V[cit->vertex(0)],
|
|
V[cit->vertex(1)],
|
|
V[cit->vertex(2)],
|
|
V[cit->vertex(3)]);
|
|
}
|
|
|
|
// Link the vertices to a cell.
|
|
for (Vertex_iterator vit2 = tds.vertices_begin();
|
|
vit2 != tds.vertices_end(); ++vit2)
|
|
V[&(*vit2)]->set_cell( F[vit2->cell()] );
|
|
|
|
// Hook neighbor pointers of the cells.
|
|
for (Cell_iterator cit2 = tds.cell_container().begin();
|
|
cit2 != tds.cells_end(); ++cit2) {
|
|
for (int j = 0; j < 4; j++)
|
|
F[&(*cit2)]->set_neighbor(j, F[cit2->neighbor(j)] );
|
|
}
|
|
|
|
CGAL_triangulation_postcondition( is_valid() );
|
|
|
|
return (vert != NULL) ? V[vert] : (Vertex_handle) NULL;
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
swap(Tds & tds)
|
|
{
|
|
// tds and *this are supposed to be valid
|
|
std::swap(_dimension, tds._dimension);
|
|
std::swap(_number_of_vertices, tds._number_of_vertices);
|
|
cell_container().swap(tds.cell_container());
|
|
vertex_container().swap(tds.vertex_container());
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
clear()
|
|
{
|
|
cell_container().clear();
|
|
vertex_container().clear();
|
|
|
|
set_number_of_vertices(0);
|
|
set_dimension(-2);
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
void
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
clear_cells_only()
|
|
{
|
|
cell_container().clear();
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
count_vertices(int & i, bool verbose, int level) const
|
|
// counts AND checks the validity
|
|
{
|
|
i = 0;
|
|
|
|
for (Vertex_iterator it = vertices_begin(); it != vertices_end(); ++it) {
|
|
if ( ! it->is_valid(verbose,level) ) {
|
|
if (verbose)
|
|
std::cerr << "invalid vertex" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
++i;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
count_facets(int & i, bool verbose, int level) const
|
|
// counts but does not check
|
|
{
|
|
i = 0;
|
|
|
|
for (Facet_iterator it = facets_begin(); it != facets_end(); ++it) {
|
|
if ( ! (*it).first->is_valid(dimension(),verbose, level) ) {
|
|
if (verbose)
|
|
std::cerr << "invalid facet" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
++i;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
count_edges(int & i, bool verbose, int level) const
|
|
// counts but does not check
|
|
{
|
|
i = 0;
|
|
|
|
for (Edge_iterator it = edges_begin(); it != edges_end(); ++it) {
|
|
if ( ! (*it).first->is_valid(dimension(),verbose, level) ) {
|
|
if (verbose)
|
|
std::cerr << "invalid edge" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
++i;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Vb, class Cb >
|
|
bool
|
|
Triangulation_data_structure_3<Vb,Cb>::
|
|
count_cells(int & i, bool verbose, int level) const
|
|
// counts AND checks the validity
|
|
{
|
|
i = 0;
|
|
|
|
for (Cell_iterator it = cells_begin(); it != cells_end(); ++it) {
|
|
if ( ! it->is_valid(dimension(),verbose, level) ) {
|
|
if (verbose)
|
|
std::cerr << "invalid cell" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
++i;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_TRIANGULATION_DATA_STRUCTURE_3_H
|