cgal/Classification/include/CGAL/Classification/ETHZ_random_forest_classifi...

252 lines
7.3 KiB
C++

// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Simon Giraudot
#ifndef CGAL_CLASSIFICATION_ETHZ_RANDOM_FOREST_CLASSIFIER_H
#define CGAL_CLASSIFICATION_ETHZ_RANDOM_FOREST_CLASSIFIER_H
#include <CGAL/license/Classification.h>
#include <CGAL/Classification/Feature_set.h>
#include <CGAL/Classification/Label_set.h>
#ifdef CGAL_CLASSIFICATION_VERBOSE
#define VERBOSE_TREE_PROGRESS 1
#endif
// Disable warnings from auxiliary library
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable:4141)
# pragma warning(disable:4244)
# pragma warning(disable:4267)
# pragma warning(disable:4275)
# pragma warning(disable:4251)
#endif
#include <CGAL/Classification/internal/auxiliary/random-forest/node-gini.hpp>
#include <CGAL/Classification/internal/auxiliary/random-forest/forest.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/gzip.hpp>
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
namespace CGAL {
namespace Classification {
/*!
\ingroup PkgClassificationClassifiers
\brief %Classifier based on the ETH Zurich version of random forest algorithm \cgalCite{cgal:w-erftl-14}.
\note This classifier is distributed under the MIT license.
\cgalModels `CGAL::Classification::Classifier`
*/
class ETHZ_random_forest_classifier
{
typedef CGAL::internal::liblearning::RandomForest::RandomForest
< CGAL::internal::liblearning::RandomForest::NodeGini
< CGAL::internal::liblearning::RandomForest::AxisAlignedSplitter> > Forest;
const Label_set& m_labels;
const Feature_set& m_features;
Forest* m_rfc;
public:
/// \name Constructor
/// @{
/*!
\brief Instantiate the classifier using the sets of `labels` and `features`.
*/
ETHZ_random_forest_classifier (const Label_set& labels,
const Feature_set& features)
: m_labels (labels), m_features (features), m_rfc (NULL)
{ }
/// \cond SKIP_IN_MANUAL
~ETHZ_random_forest_classifier ()
{
if (m_rfc != NULL)
delete m_rfc;
}
/// \endcond
/// @}
/// \name Training
/// @{
/*!
\brief Runs the training algorithm.
From the set of provided ground truth, this algorithm estimates
sets up the random trees that produce the most accurate result
with respect to this ground truth.
\pre At least one ground truth item should be assigned to each
label.
\param ground_truth vector of label indices. It should contain for
each input item, in the same order as the input set, the index of
the corresponding label in the `Label_set` provided in the
constructor. Input items that do not have a ground truth
information should be given the value `-1`.
\param reset_trees should be set to `false` if the users wants to
_add_ new trees to the existing forest, and kept to `true` if the
training should be recomputing from scratch (discarding the
current forest).
\param num_trees number of trees generated by the training
algorithm. Higher values may improve result at the cost of higher
computation times (in general, using a few dozens of trees is
enough).
\param max_depth maximum depth of the trees. Higher values will
improve how the forest fits the training set. A overly low value
will underfit the test data and conversely an overly high value
will likely overfit.
*/
template <typename LabelIndexRange>
void train (const LabelIndexRange& ground_truth,
bool reset_trees = true,
std::size_t num_trees = 25,
std::size_t max_depth = 20)
{
CGAL::internal::liblearning::RandomForest::ForestParams params;
params.n_trees = num_trees;
params.max_depth = max_depth;
std::vector<int> gt;
std::vector<float> ft;
for (std::size_t i = 0; i < ground_truth.size(); ++ i)
{
int g = int(ground_truth[i]);
if (g != -1)
{
for (std::size_t f = 0; f < m_features.size(); ++ f)
ft.push_back(m_features[f]->value(i));
gt.push_back(g);
}
}
std::cerr << "Using " << gt.size() << " inliers" << std::endl;
CGAL::internal::liblearning::DataView2D<int> label_vector (&(gt[0]), gt.size(), 1);
CGAL::internal::liblearning::DataView2D<float> feature_vector(&(ft[0]), gt.size(), ft.size() / gt.size());
if (m_rfc != NULL && reset_trees)
{
delete m_rfc;
m_rfc = NULL;
}
if (m_rfc == NULL)
m_rfc = new Forest (params);
CGAL::internal::liblearning::RandomForest::AxisAlignedRandomSplitGenerator generator;
m_rfc->train(feature_vector, label_vector, CGAL::internal::liblearning::DataView2D<int>(), generator, 0, false, reset_trees);
}
/// \cond SKIP_IN_MANUAL
void operator() (std::size_t item_index, std::vector<float>& out) const
{
out.resize (m_labels.size(), 0.);
std::vector<float> ft;
ft.reserve (m_features.size());
for (std::size_t f = 0; f < m_features.size(); ++ f)
ft.push_back (m_features[f]->value(item_index));
std::vector<float> prob (m_labels.size());
m_rfc->evaluate (ft.data(), prob.data());
for (std::size_t i = 0; i < out.size(); ++ i)
out[i] = (std::min) (1.f, (std::max) (0.f, prob[i]));
}
/// \endcond
/// @}
/// \name Input/Output
/// @{
/*!
\brief Saves the current configuration in the stream `output`.
This allows to easily save and recover a specific classification
configuration.
The output file is written in an GZIP container that is readable
by the `load_configuration()` method.
*/
void save_configuration (std::ostream& output)
{
boost::iostreams::filtering_ostream outs;
outs.push(boost::iostreams::gzip_compressor());
outs.push(output);
boost::archive::text_oarchive oas(outs);
oas << BOOST_SERIALIZATION_NVP(*m_rfc);
}
/*!
\brief Loads a configuration from the stream `input`.
The input file should be a GZIP container written by the
`save_configuration()` method. The feature set of the classifier
should contain the exact same features in the exact same order as
the ones present when the file was generated using
`save_configuration()`.
*/
void load_configuration (std::istream& input)
{
CGAL::internal::liblearning::RandomForest::ForestParams params;
if (m_rfc != NULL)
delete m_rfc;
m_rfc = new Forest (params);
boost::iostreams::filtering_istream ins;
ins.push(boost::iostreams::gzip_decompressor());
ins.push(input);
boost::archive::text_iarchive ias(ins);
ias >> BOOST_SERIALIZATION_NVP(*m_rfc);
}
};
}
}
#endif // CGAL_CLASSIFICATION_ETHZ_RANDOM_FOREST_CLASSIFIER_H