cgal/Kernel_23/include/CGAL/Triangle_2.h

200 lines
4.2 KiB
C++

// Copyright (c) 1999 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Andreas Fabri
#ifndef CGAL_TRIANGLE_2_H
#define CGAL_TRIANGLE_2_H
CGAL_BEGIN_NAMESPACE
template <class R_>
class Triangle_2 : public R_::Kernel_base::Triangle_2
{
typedef typename R_::Point_2 Point_2;
typedef typename R_::Aff_transformation_2 Aff_transformation_2;
typedef typename R_::Kernel_base::Triangle_2 RTriangle_2;
public:
typedef RTriangle_2 Rep;
const Rep& rep() const
{
return *this;
}
Rep& rep()
{
return *this;
}
typedef R_ R;
typedef typename R::FT FT;
Triangle_2() {}
Triangle_2(const RTriangle_2& t)
: RTriangle_2(t) {}
Triangle_2(const Point_2 &p, const Point_2 &q, const Point_2 &r)
: RTriangle_2(typename R::Construct_triangle_2()(p,q,r).rep()) {}
FT
area() const
{
return R().compute_area_2_object()(vertex(0), vertex(1), vertex(2));
}
Orientation
orientation() const
{
return R().orientation_2_object()(vertex(0), vertex(1), vertex(2));
}
Bounded_side
bounded_side(const Point_2 &p) const
{
return R().bounded_side_2_object()(*this,p);
}
Oriented_side
oriented_side(const Point_2 &p) const
{
return R().oriented_side_2_object()(*this,p);
}
bool
operator==(const Triangle_2 &t) const
{
return R().equal_2_object()(*this,t);
}
bool
operator!=(const Triangle_2 &t) const
{
return !(*this == t);
}
typename Qualified_result_of<typename R::Construct_vertex_2, Triangle_2, int>::type
vertex(int i) const
{
return R().construct_vertex_2_object()(*this,i);
}
typename Qualified_result_of<typename R::Construct_vertex_2, Triangle_2, int>::type
operator[](int i) const
{
return vertex(i);
}
bool
has_on_bounded_side(const Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
bool
has_on_unbounded_side(const Point_2 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
bool
has_on_boundary(const Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDARY;
}
bool
has_on_negative_side(const Point_2 &p) const
{
return oriented_side(p) == ON_NEGATIVE_SIDE;
}
bool
has_on_positive_side(const Point_2 &p) const
{
return oriented_side(p) == ON_POSITIVE_SIDE;
}
bool
is_degenerate() const
{
return R().collinear_2_object()(vertex(0), vertex(1), vertex(2));
}
Bbox_2
bbox() const
{
return R().construct_bbox_2_object()(*this);
}
Triangle_2
opposite() const
{
return R().construct_opposite_triangle_2_object()(*this);
}
Triangle_2
transform(const Aff_transformation_2 &t) const
{
return Triangle_2(t.transform(vertex(0)),
t.transform(vertex(1)),
t.transform(vertex(2)));
}
};
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLE_2
template < class R >
std::ostream &
operator<<(std::ostream &os, const Triangle_2<R> &t)
{
return os << t.rep();
}
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLE_2
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLE_2
template < class R >
std::istream &
operator>>(std::istream &is, Triangle_2<R> &t)
{
return is >> t.rep();
}
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLE_2
CGAL_END_NAMESPACE
#endif // CGAL_TRIANGLE_2_H