mirror of https://github.com/CGAL/cgal
64 lines
2.4 KiB
TeX
64 lines
2.4 KiB
TeX
\begin{ccRefClass}{Point_d<Kernel>}
|
|
\ccInclude{CGAL/Point_d.h}
|
|
|
|
\ccDefinition
|
|
|
|
An object of the class \ccClassTemplateName\ is a point in $d$-dimensional
|
|
Euclidean space $E_d$, where $d$ is arbitrary.
|
|
|
|
|
|
% -----------------------------------------------------------------------------
|
|
\ccCreation
|
|
\ccCreationVariable{p}
|
|
|
|
A \ccClassTemplateName\ object can be created from an iterator range.
|
|
|
|
\ccConstructor{ template <class InputIterator>
|
|
Point_d (int dim,
|
|
InputIterator first,
|
|
InputIterator last);}
|
|
{if the range \ccc{[first,last)} contains \ccc{dim} elements,
|
|
this creates a point with Cartesian coordinates as specified by
|
|
the range. If \ccc{[first,last)} contains \ccc{dim+1} elements,
|
|
the range specifies the homogeneous coordinates of \ccVar.
|
|
\ccPrecond \ccc{dim} is nonnegative, \ccc{[first,last)} has
|
|
\ccc{dim} or \ccc{dim+1} elements, and the value types of first
|
|
and last are \ccc{Kernel::RT}.}
|
|
|
|
\emph{Note}: in case your compiler does not support member templates, \cgal\
|
|
provides the following specialized constructor.
|
|
|
|
\ccConstructor {Point_d (int dim, const Kernel::RT* first,
|
|
const Kernel::RT* last);}{}
|
|
|
|
% -----------------------------------------------------------------------------
|
|
\ccOperations
|
|
|
|
\ccMemberFunction{ bool operator == (const Point_d<Kernel>& q) const;}
|
|
{Equality test. Two points are equal if they have the same
|
|
dimension and agree in all coordinates.}
|
|
|
|
\ccMemberFunction{ bool operator != (const Point_d<Kernel>& q) const;}
|
|
{Test for inequality.}
|
|
|
|
\ccMemberFunction{ Kernel::RT homogeneous( int i) const;}
|
|
{returns the i'th homogeneous coordinate of \ccVar, starting
|
|
with 0. \ccPrecond $0\leq i\leq \ccc{d}$.}
|
|
|
|
\ccMemberFunction{ Kernel::FT cartesian( int i) const;}
|
|
{returns the i'th Cartesian coordinate of \ccVar, starting
|
|
with 0. \ccPrecond $0\leq i < \ccc{d}$.}
|
|
|
|
\ccMemberFunction{ Kernel::FT operator [] (int i) const;}
|
|
{returns the i'th Cartesian coordinate of \ccVar, starting
|
|
with 0. \ccPrecond $0\leq i < \ccc{d}$.}
|
|
|
|
\ccMemberFunction{ int dimension () const;}
|
|
{returns the dimension \ccc{d} of \ccVar.}
|
|
|
|
\ccSeeAlso
|
|
\ccRefConceptPage{Kernel::Point_d}
|
|
|
|
% -----------------------------------------------------------------------------
|
|
\end{ccRefClass}%
|