mirror of https://github.com/CGAL/cgal
35 lines
1.4 KiB
TeX
35 lines
1.4 KiB
TeX
\begin{ccRefClass}[Kdtree_d<Traits>::]{Box}
|
|
\ccDefinition An object $B$ of the class
|
|
\ccStyle{Box} is a $d$-dimensional box (it may
|
|
be unbounded). A $d$-dimensional box is the set defined by the
|
|
Cartesian set $[l_1, r_1) \times [l_2, r_2) \times \cdots \times
|
|
[l_d,r_d)$.
|
|
|
|
\ccCreation
|
|
\ccCreationVariable{box}
|
|
|
|
\ccConstructor{Box( int d );}{Construct a box corresponding to
|
|
the whole $d$-dimensional space}
|
|
|
|
\ccConstructor{Box( Point left, Right right, int d );}{ Construct
|
|
the axis parallel box in the $d$-dimensional space defined by
|
|
the points \ccStyle{left}, \ccStyle{right}.}
|
|
|
|
\ccOperations
|
|
|
|
\ccMethod{void set_coord_left( int k, Point & left );}{ set
|
|
the left endpoint of the $k$-th dimensional interval of \ccVar\ {}
|
|
to be the $k$-th coordinate of \ccStyle{left}}
|
|
|
|
\ccMethod{void set_coord_right( int k, Point & right );}{ set
|
|
the right endpoint of the $k$-th dimensional interval of \ccVar\ {}
|
|
to be the $k$-th coordinate of \ccStyle{right}}
|
|
|
|
\ccMethod{bool is_in( Point pnt );}{return \ccStyle{true}
|
|
if \ccStyle{pnt} lies inside \ccVar.}
|
|
|
|
\ccMethod{bool is_coord_in_range( int k, Point pnt );}{ return
|
|
\ccStyle{true} if the $k$-th coordinate of \ccStyle{pnt} lies
|
|
inside the $k$-th dimensional interval of \ccVar.}
|
|
\end{ccRefClass}
|