cgal/BGL/include/CGAL/boost/graph/alpha_expansion_graphcut.h

881 lines
32 KiB
C++

// Copyright (c) 2014 GeometryFactory (France). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Ilker O. Yaz, Simon Giraudot
#ifndef CGAL_BOOST_GRAPH_ALPHA_EXPANSION_GRAPHCUT_H
#define CGAL_BOOST_GRAPH_ALPHA_EXPANSION_GRAPHCUT_H
#include <CGAL/Iterator_range.h>
#include <CGAL/assertions.h>
#include <CGAL/property_map.h>
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
#include <CGAL/Timer.h>
#endif
#include <CGAL/IO/trace.h>
#include <CGAL/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <boost/version.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/compressed_sparse_row_graph.hpp>
#if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable:4172) // Address boost_1_67_0\boost\graph\named_function_params.hpp(240): warning C4172: returning address of local variable or temporary
#endif
#include <boost/graph/boykov_kolmogorov_max_flow.hpp>
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
#include <vector>
namespace CGAL
{
/// \cond SKIP_IN_MANUAL
namespace internal
{
struct Alpha_expansion_old_API_wrapper_graph
{
typedef std::size_t vertex_descriptor;
typedef std::size_t edge_descriptor;
typedef boost::directed_tag directed_category;
typedef boost::disallow_parallel_edge_tag edge_parallel_category;
typedef boost::edge_list_graph_tag traversal_category;
typedef boost::counting_iterator<std::size_t> counting_iterator;
typedef CGAL::Iterator_range<counting_iterator> counting_range;
typedef CGAL::Identity_property_map<std::size_t> Vertex_index_map;
typedef CGAL::Pointer_property_map<std::size_t>::type Vertex_label_map;
struct Vertex_label_cost_map
{
typedef std::size_t key_type;
typedef std::vector<double> value_type;
typedef value_type reference;
typedef boost::readable_property_map_tag category;
const std::vector<std::vector<double> >* cost_matrix;
Vertex_label_cost_map (const std::vector<std::vector<double> >* cost_matrix)
: cost_matrix (cost_matrix)
{ }
friend value_type get (const Vertex_label_cost_map& pmap, key_type idx)
{
std::vector<double> out;
out.reserve (pmap.cost_matrix->size());
for (std::size_t i = 0; i < pmap.cost_matrix->size(); ++ i)
out.push_back ((*pmap.cost_matrix)[i][idx]);
return out;
}
};
typedef CGAL::Pointer_property_map<double>::const_type Edge_cost_map;
const std::vector<std::pair<std::size_t, std::size_t> >& edges;
const std::vector<double>& edge_costs;
const std::vector<std::vector<double> >& cost_matrix;
std::vector<std::size_t>& labels;
Alpha_expansion_old_API_wrapper_graph (const std::vector<std::pair<std::size_t, std::size_t> >& edges,
const std::vector<double>& edge_costs,
const std::vector<std::vector<double> >& cost_matrix,
std::vector<std::size_t>& labels)
: edges (edges), edge_costs (edge_costs), cost_matrix (cost_matrix), labels (labels)
{ }
friend counting_range vertices (const Alpha_expansion_old_API_wrapper_graph& graph)
{
return CGAL::make_range (boost::counting_iterator<std::size_t>(0),
boost::counting_iterator<std::size_t>(graph.labels.size()));
}
friend std::size_t num_vertices (const Alpha_expansion_old_API_wrapper_graph& graph) { return graph.labels.size(); }
friend counting_range edges (const Alpha_expansion_old_API_wrapper_graph& graph)
{
return CGAL::make_range (boost::counting_iterator<std::size_t>(0),
boost::counting_iterator<std::size_t>(graph.edges.size()));
}
friend vertex_descriptor source (edge_descriptor ed, const Alpha_expansion_old_API_wrapper_graph& graph)
{ return graph.edges[ed].first; }
friend vertex_descriptor target (edge_descriptor ed, const Alpha_expansion_old_API_wrapper_graph& graph)
{ return graph.edges[ed].second; }
Vertex_index_map vertex_index_map() const { return Vertex_index_map(); }
Vertex_label_map vertex_label_map() { return CGAL::make_property_map(labels); }
Vertex_label_cost_map vertex_label_cost_map() const
{ return Vertex_label_cost_map(&cost_matrix); }
Edge_cost_map edge_cost_map() const { return CGAL::make_property_map(edge_costs); }
};
////////////////////////////////////////////////////////////////////////////////////////
// Comments about performance:
//
// 1) With BGL:
// * Using adjacency_list:
// ** Without pre-allocating vertex-list
// | OutEdgeList | VertexList | Performance |
// | listS | listS | 25.2 |
// | vecS | listS | 22.7 |
// | listS | vecS | 30.7 |
// | vecS | vecS | 26.1 |
//
// ** With pre-allocating vertex-list with max-node size
// (Note: exact number of vertices are not certain at the beginning)
// | OutEdgeList | VertexList | Performance |
// | listS | vecS | 25.2 |
// | vecS | vecS | 23.4 |
//
// * Didn't try adjacency_matrix since our graph is sparse
// ( Also one can check BGL book, performance section )
//
// Decision:
// * Alpha_expansion_graph_cut_boost: use adjacency_list<vecS, listS> without
// pre-allocating vertex-list.
//
// 2) With Boykov-Kolmogorov MAXFLOW software:
// (http://pub.ist.ac.at/~vnk/software/maxflow-v2.21.src.tar.gz)
// | Performance |
// | 3.1 |
// * Alpha_expansion_graph_cut_boykov_kolmogorov provides an implementation.
// MAXFLOW does not provide any option for pre-allocation (It is possible with v_3.02 though).
//
// Typical Benchmark result provided by Ilker
// | construction of vertices | construction of edges | graph cut | Total
// -----------------------------------------------------------------------------------------------------------
// boost with an adjacency list | 1.53 | 1.51 | 3.00 | 6.04
// boost with CSR | 0.11 (gather in a vector) | 0.15 (gather in a vector) | 2.67 | 2.93
// MaxFlow | 0.042 | 0.076 | 1.043 | 1.161
//
// The main issue for now with CSR is the construction of the opposite edge map that is too costly,
// since it is done by exploring all edges to find opposite
////////////////////////////////////////////////////////////////////////////////////////
} // namespace internal
/**
* @brief Implements alpha-expansion graph cut algorithm.
*
* For representing graph, it uses adjacency_list with OutEdgeList = vecS, VertexList = listS.
* Also no pre-allocation is made for vertex-list.
*/
class Alpha_expansion_boost_adjacency_list_impl
{
private:
typedef boost::adjacency_list_traits<boost::vecS, boost::listS, boost::directedS>
Adjacency_list_traits;
typedef boost::adjacency_list<boost::vecS, boost::listS, boost::directedS,
// 4 vertex properties
boost::property<boost::vertex_index_t, std::size_t,
boost::property<boost::vertex_color_t, boost::default_color_type,
boost::property<boost::vertex_distance_t, double,
boost::property<boost::vertex_predecessor_t, Adjacency_list_traits::edge_descriptor >
> > >,
// 3 edge properties
boost::property<boost::edge_capacity_t, double,
boost::property<boost::edge_residual_capacity_t, double,
boost::property<boost::edge_reverse_t, Adjacency_list_traits::edge_descriptor> >
> > Graph;
typedef boost::graph_traits<Graph> Traits;
typedef boost::color_traits<boost::default_color_type> ColorTraits;
public:
typedef Traits::vertex_descriptor Vertex_descriptor;
typedef Traits::vertex_iterator Vertex_iterator;
typedef Traits::edge_descriptor Edge_descriptor;
typedef Traits::edge_iterator Edge_iterator;
private:
Graph graph;
Vertex_descriptor cluster_source;
Vertex_descriptor cluster_sink;
public:
void clear_graph()
{
graph.clear();
cluster_source = boost::add_vertex(graph);
cluster_sink = boost::add_vertex(graph);
}
Vertex_descriptor add_vertex()
{
return boost::add_vertex(graph);
}
void add_tweight (Vertex_descriptor& v, double w1, double w2)
{
add_edge (cluster_source, v, w1, 0);
add_edge (v, cluster_sink, w2, 0);
}
void init_vertices()
{
// initialize vertex indices, it is necessary since we are using VertexList = listS
Vertex_iterator v_begin, v_end;
Traits::vertices_size_type index = 0;
for(std::tie(v_begin, v_end) = vertices(graph); v_begin != v_end; ++v_begin) {
boost::put(boost::vertex_index, graph, *v_begin, index++);
}
}
double max_flow()
{
return boost::boykov_kolmogorov_max_flow(graph, cluster_source,
cluster_sink);
}
template <typename VertexLabelMap, typename InputVertexDescriptor>
void update(VertexLabelMap vertex_label_map,
const std::vector<Vertex_descriptor>& inserted_vertices,
InputVertexDescriptor vd,
std::size_t vertex_i,
std::size_t alpha)
{
boost::default_color_type color = boost::get(boost::vertex_color, graph,
inserted_vertices[vertex_i]);
if(std::size_t(get (vertex_label_map, vd)) != alpha
&& color == ColorTraits::white()) //new comers (expansion occurs)
put (vertex_label_map, vd,
static_cast<typename boost::property_traits<VertexLabelMap>::value_type>(alpha));
}
void add_edge (Vertex_descriptor& v1, Vertex_descriptor& v2, double w1, double w2)
{
Edge_descriptor v1_v2, v2_v1;
bool v1_v2_added, v2_v1_added;
std::tie(v1_v2, v1_v2_added) = boost::add_edge(v1, v2, graph);
std::tie(v2_v1, v2_v1_added) = boost::add_edge(v2, v1, graph);
CGAL_assertion(v1_v2_added && v2_v1_added);
//put edge capacities
boost::put(boost::edge_reverse, graph, v1_v2, v2_v1);
boost::put(boost::edge_reverse, graph, v2_v1, v1_v2);
//map reverse edges
boost::put(boost::edge_capacity, graph, v1_v2, w1);
boost::put(boost::edge_capacity, graph, v2_v1, w2);
}
};
// another implementation using compressed_sparse_row_graph
// for now there is a performance problem while setting reverse edges
// if that can be solved, it is faster than Alpha_expansion_graph_cut_boost
class Alpha_expansion_boost_compressed_sparse_row_impl
{
private:
// CSR only accepts bundled props
struct VertexP {
boost::default_color_type vertex_color;
double vertex_distance_t;
// ? do not now there is another way to take it, I think since edge_descriptor does not rely on properties
// this should be fine...
boost::compressed_sparse_row_graph<boost::directedS>::edge_descriptor
vertex_predecessor;
};
struct EdgeP {
double edge_capacity;
double edge_residual_capacity;
boost::compressed_sparse_row_graph<boost::directedS>::edge_descriptor
edge_reverse;
};
typedef boost::compressed_sparse_row_graph<boost::directedS,
VertexP, EdgeP> Graph;
typedef boost::graph_traits<Graph> Traits;
typedef boost::color_traits<boost::default_color_type> ColorTraits;
public:
typedef Traits::vertex_descriptor Vertex_descriptor;
typedef Traits::vertex_iterator Vertex_iterator;
typedef Traits::edge_descriptor Edge_descriptor;
typedef Traits::edge_iterator Edge_iterator;
private:
Graph graph;
std::size_t nb_vertices;
std::vector<std::pair<std::size_t, std::size_t> > edge_map;
std::vector<EdgeP> edge_map_weights;
public:
void clear_graph()
{
nb_vertices = 2;
edge_map.clear();
edge_map_weights.clear();
// edge_map.reserve(labels.size() *
// 8); // there is no way to know exact edge count, it is a heuristic value
// edge_map_weights.reserve(labels.size() * 8);
}
Vertex_descriptor add_vertex()
{
return (nb_vertices ++);
}
void add_tweight (Vertex_descriptor& v, double w1, double w2)
{
add_edge (0, v, w1, 0);
add_edge (v, 1, w2, 0);
}
void init_vertices()
{
graph = Graph(boost::edges_are_unsorted, edge_map.begin(), edge_map.end(),
edge_map_weights.begin(), nb_vertices);
// PERFORMANCE PROBLEM
// need to set reverse edge map, I guess there is no way to do that before creating the graph
// since we do not have edge_descs
// however from our edge_map, we know that each (2i, 2i + 1) is reverse pairs, how to facilitate that ?
// will look it back
Graph::edge_iterator ei, ee;
for(std::tie(ei, ee) = boost::edges(graph); ei != ee; ++ei) {
Graph::vertex_descriptor v1 = boost::source(*ei, graph);
Graph::vertex_descriptor v2 = boost::target(*ei, graph);
std::pair<Graph::edge_descriptor, bool> opp_edge = boost::edge(v2, v1, graph);
CGAL_assertion(opp_edge.second);
graph[opp_edge.first].edge_reverse =
*ei; // and edge_reverse of *ei will be (or already have been) set by the opp_edge
}
}
double max_flow()
{
// since properties are bundled, defaults does not work need to specify them
return boost::boykov_kolmogorov_max_flow
(graph,
boost::get(&EdgeP::edge_capacity, graph),
boost::get(&EdgeP::edge_residual_capacity, graph),
boost::get(&EdgeP::edge_reverse, graph),
boost::get(&VertexP::vertex_predecessor, graph),
boost::get(&VertexP::vertex_color, graph),
boost::get(&VertexP::vertex_distance_t, graph),
boost::get(boost::vertex_index,
graph), // this is not bundled, get it from graph (CRS provides one)
0, 1);
}
template <typename VertexLabelMap, typename InputVertexDescriptor>
void update(VertexLabelMap vertex_label_map,
const std::vector<Vertex_descriptor>&,
InputVertexDescriptor vd,
std::size_t vertex_i,
std::size_t alpha)
{
boost::default_color_type color = graph[vertex_i + 2].vertex_color;
if(get(vertex_label_map, vd)!= alpha
&& color == ColorTraits::white()) //new comers (expansion occurs)
put(vertex_label_map, vd, alpha);
}
void add_edge(Vertex_descriptor v1, Vertex_descriptor v2, double w1, double w2)
{
edge_map.push_back(std::make_pair(v1, v2));
EdgeP p1;
p1.edge_capacity = w1;
edge_map_weights.push_back(p1);
edge_map.push_back(std::make_pair(v2, v1));
EdgeP p2;
p2.edge_capacity = w2;
edge_map_weights.push_back(p2);
}
};
// tags
struct Alpha_expansion_boost_adjacency_list_tag { };
struct Alpha_expansion_boost_compressed_sparse_row_tag { };
struct Alpha_expansion_MaxFlow_tag { };
// forward declaration
class Alpha_expansion_MaxFlow_impl;
/// \endcond
// NOTE: latest performances check (2019-07-22)
//
// Using a random graph with 50000 vertices, 100000 edges and 30 labels:
//
// METHOD TIMING MEMORY
// Boost Adjacency list 49s 122MiB
// Boost CSR 187s 77MiB
// MaxFlow 12s 717MiB
/**
\ingroup PkgBGLPartition
regularizes a partition of a graph into `n` labels using the alpha
expansion algorithm \cgalCite{Boykov2001FastApproximate}.
For a graph \f$(V,E)\f$, this function computes a partition `f`
that minimizes the following cost function:
\f[
\mathrm{C}(f) = \sum_{\{v0,v1\} \in E} C_E(v0,v1) + \sum_{v \in V} C_V(f_v)
\f]
where \f$C_E(v0,v1)\f$ is the edge cost of assigning a different
label to \f$v0\f$ and \f$v1\f$, and \f$C_V(f_v)\f$ is the vertex
cost of assigning the label \f$f\f$ to the vertex \f$v\f$.
\tparam InputGraph a model of `VertexAndEdgeListGraph`
\tparam EdgeCostMap a model of `ReadablePropertyMap` with
`boost::graph_traits<InputGraph>::%edge_descriptor` as key and `double`
as value
\tparam VertexLabelCostMap a model of `ReadablePropertyMap`
with `boost::graph_traits<InputGraph>::%vertex_descriptor` as key and
`std::vector<double>` as value
\tparam VertexLabelMap a model of `ReadWritePropertyMap` with
`boost::graph_traits<InputGraph>::%vertex_descriptor` as key and
`std::size_t` as value
\tparam NamedParameters a sequence of named parameters
\param input_graph the input graph.
\param edge_cost_map a property map providing the weight of each
edge.
\param vertex_label_map a property map providing the label of each
vertex. This map will be updated by the algorithm with the
regularized version of the partition.
\param vertex_label_cost_map a property map providing, for each
vertex, an `std::vector` containing the cost of this vertex to
belong to each label. Each `std::vector` should have the same size
`n` (which is the number of labels), each label being indexed from
`0` to `n-1`. For example, `get(vertex_label_cost_map,
vd)[label_idx]` returns the cost of vertex `vd` to belong to the
label `label_idx`.
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
\cgalNamedParamsBegin
\cgalParamNBegin{vertex_index_map}
\cgalParamDescription{a property map associating to each vertex of `input_graph` a unique index between `0` and `num_vertices(input_graph) - 1`}
\cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<InputGraph>::%vertex_descriptor`
as key type and `std::size_t` as value type}
\cgalParamDefault{an automatically indexed internal map}
\cgalParamExtra{If this parameter is not passed, internal machinery will create and initialize
a face index property map, either using the internal property map if it exists
or using an external map. The latter might result in - slightly - worsened performance
in case of non-constant complexity for index access.}
\cgalParamNEnd
\cgalParamNBegin{implementation_tag}
\cgalParamDescription{a tag used to select which implementation of the alpha expansion should be used.
Available implementation tags are:
- `CGAL::Alpha_expansion_boost_adjacency_list`
- `CGAL::Alpha_expansion_boost_compressed_sparse_row_tag`
- `CGAL::Alpha_expansion_MaxFlow_tag`}
\cgalParamDefault{`CGAL::Alpha_expansion_boost_adjacency_list`}
\cgalParamNEnd
\cgalNamedParamsEnd
\note The `MaxFlow` implementation is provided by the \ref PkgSurfaceMeshSegmentation package
under GPL license. The header `<CGAL/boost/graph/Alpha_expansion_MaxFlow_tag.h>`
must be included if users want to use this implementation.
*/
template <typename InputGraph,
typename EdgeCostMap,
typename VertexLabelCostMap,
typename VertexLabelMap,
typename NamedParameters = parameters::Default_named_parameters>
double alpha_expansion_graphcut (const InputGraph& input_graph,
EdgeCostMap edge_cost_map,
VertexLabelCostMap vertex_label_cost_map,
VertexLabelMap vertex_label_map,
const NamedParameters& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
typedef boost::graph_traits<InputGraph> GT;
typedef typename GT::edge_descriptor input_edge_descriptor;
typedef typename GT::vertex_descriptor input_vertex_descriptor;
typedef typename GetInitializedVertexIndexMap<InputGraph, NamedParameters>::type VertexIndexMap;
VertexIndexMap vertex_index_map = CGAL::get_initialized_vertex_index_map(input_graph, np);
typedef typename GetImplementationTag<NamedParameters>::type Impl_tag;
// select implementation
typedef typename std::conditional
<std::is_same<Impl_tag, Alpha_expansion_boost_adjacency_list_tag>::value,
Alpha_expansion_boost_adjacency_list_impl,
typename std::conditional
<std::is_same<Impl_tag, Alpha_expansion_boost_compressed_sparse_row_tag>::value,
Alpha_expansion_boost_compressed_sparse_row_impl,
Alpha_expansion_MaxFlow_impl>::type>::type
Alpha_expansion;
typedef typename Alpha_expansion::Vertex_descriptor Vertex_descriptor;
Alpha_expansion alpha_expansion;
// TODO: check this hardcoded parameter
const double tolerance = 1e-10;
double min_cut = (std::numeric_limits<double>::max)();
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
double vertex_creation_time, edge_creation_time, cut_time;
vertex_creation_time = edge_creation_time = cut_time = 0.0;
#endif
std::vector<Vertex_descriptor> inserted_vertices;
inserted_vertices.resize(num_vertices (input_graph));
std::size_t number_of_labels = get(vertex_label_cost_map, *(vertices(input_graph).first)).size();
bool success;
bool full_loop = false;
do {
success = false;
for (std::size_t alpha = 0; alpha < number_of_labels; ++ alpha)
{
alpha_expansion.clear_graph();
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
Timer timer;
timer.start();
#endif
// For E-Data
// add every input vertex as a vertex to the graph, put edges to source & sink vertices
for (input_vertex_descriptor vd : CGAL::make_range(vertices(input_graph)))
{
std::size_t vertex_i = get(vertex_index_map, vd);
Vertex_descriptor new_vertex = alpha_expansion.add_vertex();
inserted_vertices[vertex_i] = new_vertex;
double source_weight = get(vertex_label_cost_map, vd)[alpha];
// since it is expansion move, current alpha labeled vertices will be assigned to alpha again,
// making sink_weight 'infinity' guarantee this.
double sink_weight = (std::size_t(get(vertex_label_map, vd)) == alpha ?
(std::numeric_limits<double>::max)()
: get(vertex_label_cost_map, vd)[get(vertex_label_map, vd)]);
alpha_expansion.add_tweight(new_vertex, source_weight, sink_weight);
}
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
vertex_creation_time += timer.time();
timer.reset();
#endif
// For E-Smooth
// add edge between every vertex,
for (input_edge_descriptor ed : CGAL::make_range(edges(input_graph)))
{
input_vertex_descriptor vd1 = source(ed, input_graph);
input_vertex_descriptor vd2 = target(ed, input_graph);
std::size_t idx1 = get (vertex_index_map, vd1);
std::size_t idx2 = get (vertex_index_map, vd2);
double weight = get (edge_cost_map, ed);
Vertex_descriptor v1 = inserted_vertices[idx1],
v2 = inserted_vertices[idx2];
std::size_t label_1 = get (vertex_label_map, vd1);
std::size_t label_2 = get (vertex_label_map, vd2);
if(label_1 == label_2) {
if(label_1 != alpha) {
alpha_expansion.add_edge(v1, v2, weight, weight);
}
} else {
Vertex_descriptor inbetween = alpha_expansion.add_vertex();
double w1 = (label_1 == alpha) ? 0 : weight;
double w2 = (label_2 == alpha) ? 0 : weight;
alpha_expansion.add_edge(inbetween, v1, w1, w1);
alpha_expansion.add_edge(inbetween, v2, w2, w2);
alpha_expansion.add_tweight(inbetween, 0., weight);
}
}
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
edge_creation_time += timer.time();
#endif
alpha_expansion.init_vertices();
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
timer.reset();
#endif
double flow = alpha_expansion.max_flow();
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
cut_time += timer.time();
#endif
if (full_loop && flow >= min_cut)
continue;
if(min_cut - flow <= flow * tolerance) {
continue;
}
min_cut = flow;
success = true;
//update labeling
for (input_vertex_descriptor vd : CGAL::make_range(vertices (input_graph)))
{
std::size_t vertex_i = get (vertex_index_map, vd);
alpha_expansion.update(vertex_label_map, inserted_vertices, vd, vertex_i, alpha);
}
}
full_loop = true;
} while (success);
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
CGAL_TRACE_STREAM << "vertex creation time: " << vertex_creation_time <<
std::endl;
CGAL_TRACE_STREAM << "edge creation time: " << edge_creation_time << std::endl;
CGAL_TRACE_STREAM << "max flow algorithm time: " << cut_time << std::endl;
#endif
return min_cut;
}
template <typename InputGraph,
typename EdgeCostMap,
typename VertexLabelCostMap,
typename VertexLabelMap,
typename NamedParameters>
double min_cut(const InputGraph& input_graph,
EdgeCostMap edge_cost_map,
VertexLabelCostMap vertex_label_cost_map,
VertexLabelMap vertex_label_map,
const NamedParameters& np)
{
using parameters::choose_parameter;
using parameters::get_parameter;
typedef boost::graph_traits<InputGraph> GT;
typedef typename GT::edge_descriptor input_edge_descriptor;
typedef typename GT::vertex_descriptor input_vertex_descriptor;
typedef typename GetInitializedVertexIndexMap<InputGraph, NamedParameters>::type VertexIndexMap;
VertexIndexMap vertex_index_map = CGAL::get_initialized_vertex_index_map(input_graph, np);
typedef typename GetImplementationTag<NamedParameters>::type Impl_tag;
// select implementation
typedef typename std::conditional
<std::is_same<Impl_tag, Alpha_expansion_boost_adjacency_list_tag>::value,
Alpha_expansion_boost_adjacency_list_impl,
typename std::conditional
<std::is_same<Impl_tag, Alpha_expansion_boost_compressed_sparse_row_tag>::value,
Alpha_expansion_boost_compressed_sparse_row_impl,
Alpha_expansion_MaxFlow_impl>::type>::type
Alpha_expansion;
typedef typename Alpha_expansion::Vertex_descriptor Vertex_descriptor;
Alpha_expansion graph;
double min_cut = (std::numeric_limits<double>::max)();
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
double vertex_creation_time, edge_creation_time, cut_time;
vertex_creation_time = edge_creation_time = cut_time = 0.0;
#endif
std::vector<Vertex_descriptor> inserted_vertices;
inserted_vertices.resize(num_vertices(input_graph));
graph.clear_graph();
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
Timer timer;
timer.start();
#endif
// For E-Data
// add every input vertex as a vertex to the graph, put edges to source & sink vertices
for (input_vertex_descriptor vd : CGAL::make_range(vertices(input_graph)))
{
std::size_t vertex_i = get(vertex_index_map, vd);
Vertex_descriptor new_vertex = graph.add_vertex();
inserted_vertices[vertex_i] = new_vertex;
double source_weight = get(vertex_label_cost_map, vd)[0];
double sink_weight = get(vertex_label_cost_map, vd)[0];
graph.add_tweight(new_vertex, source_weight, sink_weight);
}
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
vertex_creation_time += timer.time();
timer.reset();
#endif
// For E-Smooth
// add edge between every vertex,
for (input_edge_descriptor ed : CGAL::make_range(edges(input_graph)))
{
input_vertex_descriptor vd1 = source(ed, input_graph);
input_vertex_descriptor vd2 = target(ed, input_graph);
std::size_t idx1 = get(vertex_index_map, vd1);
std::size_t idx2 = get(vertex_index_map, vd2);
double weight = get(edge_cost_map, ed);
Vertex_descriptor v1 = inserted_vertices[idx1],
v2 = inserted_vertices[idx2];
graph.add_edge(v1, v2, weight, weight);
}
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
edge_creation_time += timer.time();
#endif
graph.init_vertices();
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
timer.reset();
#endif
min_cut = graph.max_flow();
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
cut_time += timer.time();
#endif
/*
//update labeling
for (input_vertex_descriptor vd : CGAL::make_range(vertices(input_graph)))
{
std::size_t vertex_i = get(vertex_index_map, vd);
alpha_expansion.update(vertex_label_map, inserted_vertices, vd, vertex_i, alpha);
}*/
graph.get_labels(vertex_index_map, vertex_label_map, inserted_vertices, CGAL::make_range(vertices(input_graph)));
/*
//update labeling
for (auto vd : vertices(input_graph)) {
std::size_t idx = get(vertex_index_map, vd);
int label = graph.get_label(inserted_vertices[idx]);
put(vertex_label_map, vd, label);
}
for (input_vertex_descriptor vd : CGAL::make_range(vertices(input_graph)))
{
std::size_t vertex_i = get(vertex_index_map, vd);
graph.update(vertex_label_map, inserted_vertices, vd, vertex_i, alpha);
}*/
#ifdef CGAL_SEGMENTATION_BENCH_GRAPHCUT
CGAL_TRACE_STREAM << "vertex creation time: " << vertex_creation_time <<
std::endl;
CGAL_TRACE_STREAM << "edge creation time: " << edge_creation_time << std::endl;
CGAL_TRACE_STREAM << "max flow algorithm time: " << cut_time << std::endl;
#endif
return min_cut;
}
/// \cond SKIP_IN_MANUAL
// Old API
inline double alpha_expansion_graphcut (const std::vector<std::pair<std::size_t, std::size_t> >& edges,
const std::vector<double>& edge_costs,
const std::vector<std::vector<double> >& cost_matrix,
std::vector<std::size_t>& labels)
{
internal::Alpha_expansion_old_API_wrapper_graph graph (edges, edge_costs, cost_matrix, labels);
return alpha_expansion_graphcut(graph,
graph.edge_cost_map(),
graph.vertex_label_cost_map(),
graph.vertex_label_map(),
CGAL::parameters::vertex_index_map (graph.vertex_index_map()));
}
template <typename AlphaExpansionImplementationTag>
double alpha_expansion_graphcut (const std::vector<std::pair<std::size_t, std::size_t> >& edges,
const std::vector<double>& edge_costs,
const std::vector<std::vector<double> >& cost_matrix,
std::vector<std::size_t>& labels,
const AlphaExpansionImplementationTag&)
{
internal::Alpha_expansion_old_API_wrapper_graph graph (edges, edge_costs, cost_matrix, labels);
return alpha_expansion_graphcut(graph,
graph.edge_cost_map(),
graph.vertex_label_cost_map(),
graph.vertex_label_map(),
CGAL::parameters::vertex_index_map (graph.vertex_index_map()).
implementation_tag (AlphaExpansionImplementationTag()));
}
template <typename AlphaExpansionImplementationTag>
double min_cut(const std::vector<std::pair<std::size_t, std::size_t> >& edges,
const std::vector<double>& edge_costs,
const std::vector<std::vector<double> >& cost_matrix,
std::vector<std::size_t>& labels,
const AlphaExpansionImplementationTag&)
{
internal::Alpha_expansion_old_API_wrapper_graph graph(edges, edge_costs, cost_matrix, labels);
return min_cut(graph,
graph.edge_cost_map(),
graph.vertex_label_cost_map(),
graph.vertex_label_map(),
CGAL::parameters::vertex_index_map(graph.vertex_index_map()).
implementation_tag(AlphaExpansionImplementationTag()));
}
/// \endcond
}//namespace CGAL
namespace boost
{
template <>
struct property_map<CGAL::internal::Alpha_expansion_old_API_wrapper_graph, boost::vertex_index_t>
{
typedef CGAL::internal::Alpha_expansion_old_API_wrapper_graph::Vertex_index_map type;
typedef CGAL::internal::Alpha_expansion_old_API_wrapper_graph::Vertex_index_map const_type;
};
}
#endif //CGAL_BOOST_GRAPH_ALPHA_EXPANSION_GRAPHCUT_H