cgal/Classification/include/CGAL/Classification/ETHZ/Random_forest_classifier.h

342 lines
10 KiB
C++

// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Simon Giraudot
#ifndef CGAL_CLASSIFICATION_ETHZ_RANDOM_FOREST_CLASSIFIER_H
#define CGAL_CLASSIFICATION_ETHZ_RANDOM_FOREST_CLASSIFIER_H
#include <CGAL/license/Classification.h>
#include <CGAL/Classification/Feature_set.h>
#include <CGAL/Classification/Label_set.h>
#include <CGAL/Classification/internal/verbosity.h>
#ifdef CGAL_CLASSIFICATION_VERBOSE
#define VERBOSE_TREE_PROGRESS 1
#endif
// Disable warnings from auxiliary library
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable:4141)
# pragma warning(disable:4244)
# pragma warning(disable:4267)
# pragma warning(disable:4275)
# pragma warning(disable:4251)
# pragma warning(disable:4996)
#endif
#include <CGAL/Classification/ETHZ/internal/random-forest/node-gini.hpp>
#include <CGAL/Classification/ETHZ/internal/random-forest/forest.hpp>
#include <CGAL/tags.h>
#include <boost/archive/text_iarchive.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/gzip.hpp>
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
namespace CGAL {
namespace Classification {
namespace ETHZ {
/*!
\ingroup PkgClassificationClassifiersETHZ
\brief %Classifier based on the ETH Zurich version of the random forest algorithm \cgalCite{cgal:w-erftl-14}.
\note This classifier is distributed under the MIT license.
\cgalModels `CGAL::Classification::Classifier`
*/
class Random_forest_classifier
{
typedef CGAL::internal::liblearning::RandomForest::RandomForest
< CGAL::internal::liblearning::RandomForest::NodeGini
< CGAL::internal::liblearning::RandomForest::AxisAlignedSplitter> > Forest;
const Label_set& m_labels;
const Feature_set& m_features;
Forest* m_rfc;
public:
/// \name Constructor
/// @{
/*!
\brief Instantiates the classifier using the sets of `labels` and `features`.
*/
Random_forest_classifier (const Label_set& labels,
const Feature_set& features)
: m_labels (labels), m_features (features), m_rfc (NULL)
{ }
/*!
\brief Copies the `other` classifier's configuration using another
set of `features`.
This constructor can be used to apply a trained random forest to
another data set.
\warning The feature set should be composed of the same features
than the ones used by `other`, and in the same order.
*/
Random_forest_classifier (const Random_forest_classifier& other,
const Feature_set& features)
: m_labels (other.m_labels), m_features (features), m_rfc (NULL)
{
std::stringstream stream;
other.save_configuration(stream);
this->load_configuration(stream);
}
/// \cond SKIP_IN_MANUAL
~Random_forest_classifier ()
{
if (m_rfc != NULL)
delete m_rfc;
}
/// \endcond
/// @}
/// \name Training
/// @{
/// \cond SKIP_IN_MANUAL
template <typename LabelIndexRange>
void train (const LabelIndexRange& ground_truth,
bool reset_trees = true,
std::size_t num_trees = 25,
std::size_t max_depth = 20)
{
#ifdef CGAL_LINKED_WITH_TBB
train<CGAL::Parallel_tag>(ground_truth, reset_trees, num_trees, max_depth);
#else
train<CGAL::Sequential_tag>(ground_truth, reset_trees, num_trees, max_depth);
#endif
}
/// \endcond
/*!
\brief Runs the training algorithm.
From the set of provided ground truth, this algorithm estimates
sets up the random trees that produce the most accurate result
with respect to this ground truth.
\pre At least one ground truth item should be assigned to each
label.
\tparam ConcurrencyTag enables sequential versus parallel
algorithm. Possible values are `Parallel_tag` (default value is
%CGAL is linked with TBB) or `Sequential_tag` (default value
otherwise).
\param ground_truth vector of label indices. It should contain for
each input item, in the same order as the input set, the index of
the corresponding label in the `Label_set` provided in the
constructor. Input items that do not have a ground truth
information should be given the value `-1`.
\param reset_trees should be set to `false` if the users wants to
_add_ new trees to the existing forest, and kept to `true` if the
training should be recomputing from scratch (discarding the
current forest).
\param num_trees number of trees generated by the training
algorithm. Higher values may improve result at the cost of higher
computation times (in general, using a few dozens of trees is
enough).
\param max_depth maximum depth of the trees. Higher values will
improve how the forest fits the training set. A overly low value
will underfit the test data and conversely an overly high value
will likely overfit.
*/
template <typename ConcurrencyTag, typename LabelIndexRange>
void train (const LabelIndexRange& ground_truth,
bool reset_trees = true,
std::size_t num_trees = 25,
std::size_t max_depth = 20)
{
CGAL::internal::liblearning::RandomForest::ForestParams params;
params.n_trees = num_trees;
params.max_depth = max_depth;
std::vector<int> gt;
std::vector<float> ft;
for (std::size_t i = 0; i < ground_truth.size(); ++ i)
{
int g = int(ground_truth[i]);
if (g != -1)
{
for (std::size_t f = 0; f < m_features.size(); ++ f)
ft.push_back(m_features[f]->value(i));
gt.push_back(g);
}
}
CGAL_CLASSIFICATION_CERR << "Using " << gt.size() << " inliers" << std::endl;
CGAL::internal::liblearning::DataView2D<int> label_vector (&(gt[0]), gt.size(), 1);
CGAL::internal::liblearning::DataView2D<float> feature_vector(&(ft[0]), gt.size(), ft.size() / gt.size());
if (m_rfc != NULL && reset_trees)
{
delete m_rfc;
m_rfc = NULL;
}
if (m_rfc == NULL)
m_rfc = new Forest (params);
CGAL::internal::liblearning::RandomForest::AxisAlignedRandomSplitGenerator generator;
m_rfc->train<ConcurrencyTag>
(feature_vector, label_vector, CGAL::internal::liblearning::DataView2D<int>(), generator, 0, reset_trees, m_labels.size());
}
/// \cond SKIP_IN_MANUAL
void operator() (std::size_t item_index, std::vector<float>& out) const
{
out.resize (m_labels.size(), 0.);
std::vector<float> ft;
ft.reserve (m_features.size());
for (std::size_t f = 0; f < m_features.size(); ++ f)
ft.push_back (m_features[f]->value(item_index));
std::vector<float> prob (m_labels.size());
m_rfc->evaluate (ft.data(), prob.data());
for (std::size_t i = 0; i < out.size(); ++ i)
out[i] = (std::min) (1.f, (std::max) (0.f, prob[i]));
}
/// \endcond
/// @}
/// \name Miscellaneous
/// @{
/*!
\brief Computes, for each feature, how many nodes in the forest
uses it as a split criterion.
Each tree of the random forest recursively splits the training
data set using at each node one of the input features. This method
counts, for each feature, how many times it was selected by the
training algorithm as a split criterion.
This method allows to evaluate how useful a feature was with
respect to a training set: if a feature is used a lot, that means
that it has a strong discriminative power with respect to how the
labels are represented by the feature set; on the contrary, if a
feature is not used very often, its discriminative power is
probably low; if a feature is _never_ used, it likely has no
interest at all and is completely uncorrelated to the label
segmentation of the training set.
\param count vector where the result is stored. After running the
method, it contains, for each feature, the number of nodes in the
forest that use it as a split criterion, in the same order as the
feature set order.
*/
void get_feature_usage (std::vector<std::size_t>& count) const
{
count.clear();
count.resize(m_features.size(), 0);
return m_rfc->get_feature_usage(count);
}
/// @}
/// \name Input/Output
/// @{
/*!
\brief Saves the current configuration in the stream `output`.
This allows to easily save and recover a specific classification
configuration.
The output file is written in an GZIP container that is readable
by the `load_configuration()` method.
*/
void save_configuration (std::ostream& output) const
{
boost::iostreams::filtering_ostream outs;
outs.push(boost::iostreams::gzip_compressor());
outs.push(output);
boost::archive::text_oarchive oas(outs);
oas << BOOST_SERIALIZATION_NVP(*m_rfc);
}
/*!
\brief Loads a configuration from the stream `input`.
The input file should be a GZIP container written by the
`save_configuration()` method. The feature set of the classifier
should contain the exact same features in the exact same order as
the ones present when the file was generated using
`save_configuration()`.
*/
void load_configuration (std::istream& input)
{
CGAL::internal::liblearning::RandomForest::ForestParams params;
if (m_rfc != NULL)
delete m_rfc;
m_rfc = new Forest (params);
boost::iostreams::filtering_istream ins;
ins.push(boost::iostreams::gzip_decompressor());
ins.push(input);
boost::archive::text_iarchive ias(ins);
ias >> BOOST_SERIALIZATION_NVP(*m_rfc);
}
};
}
/// \cond SKIP_IN_MANUAL
// Backward compatibility
typedef ETHZ::Random_forest_classifier ETHZ_random_forest_classifier;
/// \endcond
}
}
#endif // CGAL_CLASSIFICATION_ETHZ_RANDOM_FOREST_CLASSIFIER_H