cgal/Polyhedron/demo/Polyhedron/Plugins/Classification/Surface_mesh_item_classific...

274 lines
8.1 KiB
C++

#include "Surface_mesh_item_classification.h"
#include "Color_ramp.h"
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
#include <CGAL/Three/Viewer_interface.h>
#include <set>
#include <stack>
#include <algorithm>
#include <boost/array.hpp>
Surface_mesh_item_classification::Surface_mesh_item_classification(Scene_surface_mesh_item* mesh)
: m_mesh (mesh),
m_selection (NULL),
m_generator (NULL)
{
m_index_color = 1;
backup_existing_colors_and_add_new();
m_training = m_mesh->polyhedron()->add_property_map<face_descriptor, std::size_t>("f:training", std::size_t(-1)).first;
m_classif = m_mesh->polyhedron()->add_property_map<face_descriptor, std::size_t>("f:label", std::size_t(-1)).first;
m_labels.add("ground");
m_labels.add("vegetation");
m_labels.add("roof");
m_labels.add("facade");
for (std::size_t i = 0; i < m_labels.size(); ++ i)
m_label_colors.push_back (this->get_new_label_color (m_labels[i]->name()));
m_sowf = new Sum_of_weighted_features (m_labels, m_features);
m_ethz = new ETHZ_random_forest (m_labels, m_features);
#ifdef CGAL_LINKED_WITH_OPENCV
m_random_forest = new Random_forest (m_labels, m_features);
#endif
}
Surface_mesh_item_classification::~Surface_mesh_item_classification()
{
if (m_sowf != NULL)
delete m_sowf;
if (m_ethz != NULL)
delete m_ethz;
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest != NULL)
delete m_random_forest;
#endif
if (m_generator != NULL)
delete m_generator;
}
void Surface_mesh_item_classification::backup_existing_colors_and_add_new()
{
bool has_colors = false;
boost::tie (m_color, has_colors) = m_mesh->polyhedron()->property_map<face_descriptor, CGAL::Color>("f:color");
if (has_colors)
{
m_real_color
= m_mesh->polyhedron()->add_property_map<face_descriptor, CGAL::Color>("f:real_color").first;
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
{
m_real_color[fd] = m_color[fd];
m_color[fd] = CGAL::Color(128, 128, 128);
}
}
else
m_color =
m_mesh->polyhedron()->add_property_map<face_descriptor, CGAL::Color>("f:color", CGAL::Color(128,128,128)).first;
}
bool Surface_mesh_item_classification::write_output(std::ostream& )
{
// TODO
return true;
}
void Surface_mesh_item_classification::change_color (int index)
{
m_index_color = index;
int index_color = index;
if (index == 0 && m_real_color == Mesh::Property_map<face_descriptor, CGAL::Color>())
index_color = -1;
static Color_ramp ramp;
ramp.build_rainbow();
if (index_color == -1) // item color
{
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
m_color[fd] = CGAL::Color(128,128,128);
}
else if (index_color == 0) // real colors
{
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
m_color[fd] = m_real_color[fd];
}
else if (index_color == 1) // classif
{
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
{
QColor color (128, 128, 128);
std::size_t c = m_classif[fd];
if (c != std::size_t(-1))
color = m_label_colors[c];
m_color[fd] = CGAL::Color(color.red(), color.green(), color.blue());
}
}
else if (index_color == 2) // training
{
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
{
QColor color (128, 128, 128);
std::size_t c = m_training[fd];
std::size_t c2 = m_classif[fd];
if (c != std::size_t(-1))
color = m_label_colors[c];
float div = 1;
if (c != c2)
div = 2;
m_color[fd] = CGAL::Color(color.red() / div,
color.green() / div,
color.blue() / div);
}
}
else
{
Feature_handle feature = m_features[index_color - 3];
float max = 0.;
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
{
if (feature->value(fd) > max)
max = feature->value(fd);
}
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
{
float v = std::max (0.f, feature->value(fd) / max);
m_color[fd] = CGAL::Color((unsigned char)(ramp.r(v) * 255),
(unsigned char)(ramp.g(v) * 255),
(unsigned char)(ramp.b(v) * 255));
}
}
}
void Surface_mesh_item_classification::compute_features (std::size_t nb_scales)
{
std::cerr << "Computing features with " << nb_scales << " scale(s)" << std::endl;
m_features.clear();
if (m_generator != NULL)
delete m_generator;
Face_center_map fc_map (m_mesh->polyhedron());
m_generator = new Generator (*(m_mesh->polyhedron()), fc_map, nb_scales);
#ifdef CGAL_LINKED_WITH_TBB
m_features.begin_parallel_additions();
#endif
m_generator->generate_point_based_features(m_features);
m_generator->generate_face_based_features(m_features);
#ifdef CGAL_LINKED_WITH_TBB
m_features.end_parallel_additions();
#endif
delete m_sowf;
m_sowf = new Sum_of_weighted_features (m_labels, m_features);
#ifdef CGAL_LINKED_WITH_OPENCV
delete m_random_forest;
m_random_forest = new Random_forest (m_labels, m_features);
#endif
std::cerr << "Features = " << m_features.size() << std::endl;
}
void Surface_mesh_item_classification::train
(int classifier, unsigned int nb_trials,
std::size_t num_trees, std::size_t max_depth)
{
if (m_features.size() == 0)
{
std::cerr << "Error: features not computed" << std::endl;
return;
}
std::vector<std::size_t> training (num_faces(*(m_mesh->polyhedron())), std::size_t(-1));
std::vector<std::size_t> indices (num_faces(*(m_mesh->polyhedron())), std::size_t(-1));
std::vector<std::size_t> nb_label (m_labels.size(), 0);
std::size_t nb_total = 0;
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
{
training[fd] = m_training[fd];
if (training[fd] != std::size_t(-1))
{
nb_label[training[fd]] ++;
++ nb_total;
}
}
std::cerr << nb_total << " face(s) used for training ("
<< 100. * (nb_total / double(m_mesh->polyhedron()->faces().size())) << "% of the total):" << std::endl;
for (std::size_t i = 0; i < m_labels.size(); ++ i)
std::cerr << " * " << m_labels[i]->name() << ": " << nb_label[i] << " face(s)" << std::endl;
if (classifier == 0)
{
m_sowf->train<Concurrency_tag>(training, nb_trials);
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
m_labels, *m_sowf,
indices);
}
else if (classifier == 1)
{
m_ethz->train(training, true, num_trees, max_depth);
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
m_labels, *m_ethz,
indices);
}
else
{
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest != NULL)
delete m_random_forest;
m_random_forest = new Random_forest (m_labels, m_features,
int(max_depth), 5, 15,
int(num_trees));
m_random_forest->train (training);
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
m_labels, *m_random_forest,
indices);
#endif
}
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
m_classif[fd] = indices[fd];
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
}
bool Surface_mesh_item_classification::run (int method, int classifier,
std::size_t subdivisions, double smoothing)
{
if (m_features.size() == 0)
{
std::cerr << "Error: features not computed" << std::endl;
return false;
}
if (classifier == 0)
run (method, *m_sowf, subdivisions, smoothing);
else if (classifier == 1)
run (method, *m_ethz, subdivisions, smoothing);
#ifdef CGAL_LINKED_WITH_OPENCV
else
run (method, *m_random_forest, subdivisions, smoothing);
#endif
return true;
}