mirror of https://github.com/CGAL/cgal
274 lines
8.1 KiB
C++
274 lines
8.1 KiB
C++
#include "Surface_mesh_item_classification.h"
|
|
#include "Color_ramp.h"
|
|
|
|
#include <CGAL/Timer.h>
|
|
#include <CGAL/Memory_sizer.h>
|
|
|
|
#include <CGAL/Three/Viewer_interface.h>
|
|
|
|
#include <set>
|
|
#include <stack>
|
|
#include <algorithm>
|
|
#include <boost/array.hpp>
|
|
|
|
Surface_mesh_item_classification::Surface_mesh_item_classification(Scene_surface_mesh_item* mesh)
|
|
: m_mesh (mesh),
|
|
m_selection (NULL),
|
|
m_generator (NULL)
|
|
{
|
|
m_index_color = 1;
|
|
|
|
backup_existing_colors_and_add_new();
|
|
m_training = m_mesh->polyhedron()->add_property_map<face_descriptor, std::size_t>("f:training", std::size_t(-1)).first;
|
|
m_classif = m_mesh->polyhedron()->add_property_map<face_descriptor, std::size_t>("f:label", std::size_t(-1)).first;
|
|
|
|
m_labels.add("ground");
|
|
m_labels.add("vegetation");
|
|
m_labels.add("roof");
|
|
m_labels.add("facade");
|
|
|
|
for (std::size_t i = 0; i < m_labels.size(); ++ i)
|
|
m_label_colors.push_back (this->get_new_label_color (m_labels[i]->name()));
|
|
|
|
m_sowf = new Sum_of_weighted_features (m_labels, m_features);
|
|
m_ethz = new ETHZ_random_forest (m_labels, m_features);
|
|
#ifdef CGAL_LINKED_WITH_OPENCV
|
|
m_random_forest = new Random_forest (m_labels, m_features);
|
|
#endif
|
|
}
|
|
|
|
|
|
Surface_mesh_item_classification::~Surface_mesh_item_classification()
|
|
{
|
|
if (m_sowf != NULL)
|
|
delete m_sowf;
|
|
if (m_ethz != NULL)
|
|
delete m_ethz;
|
|
#ifdef CGAL_LINKED_WITH_OPENCV
|
|
if (m_random_forest != NULL)
|
|
delete m_random_forest;
|
|
#endif
|
|
if (m_generator != NULL)
|
|
delete m_generator;
|
|
}
|
|
|
|
void Surface_mesh_item_classification::backup_existing_colors_and_add_new()
|
|
{
|
|
bool has_colors = false;
|
|
boost::tie (m_color, has_colors) = m_mesh->polyhedron()->property_map<face_descriptor, CGAL::Color>("f:color");
|
|
if (has_colors)
|
|
{
|
|
m_real_color
|
|
= m_mesh->polyhedron()->add_property_map<face_descriptor, CGAL::Color>("f:real_color").first;
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
{
|
|
m_real_color[fd] = m_color[fd];
|
|
m_color[fd] = CGAL::Color(128, 128, 128);
|
|
}
|
|
}
|
|
else
|
|
m_color =
|
|
m_mesh->polyhedron()->add_property_map<face_descriptor, CGAL::Color>("f:color", CGAL::Color(128,128,128)).first;
|
|
}
|
|
|
|
bool Surface_mesh_item_classification::write_output(std::ostream& )
|
|
{
|
|
// TODO
|
|
return true;
|
|
}
|
|
|
|
|
|
void Surface_mesh_item_classification::change_color (int index)
|
|
{
|
|
m_index_color = index;
|
|
int index_color = index;
|
|
if (index == 0 && m_real_color == Mesh::Property_map<face_descriptor, CGAL::Color>())
|
|
index_color = -1;
|
|
|
|
static Color_ramp ramp;
|
|
ramp.build_rainbow();
|
|
|
|
if (index_color == -1) // item color
|
|
{
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
m_color[fd] = CGAL::Color(128,128,128);
|
|
}
|
|
else if (index_color == 0) // real colors
|
|
{
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
m_color[fd] = m_real_color[fd];
|
|
}
|
|
else if (index_color == 1) // classif
|
|
{
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
{
|
|
QColor color (128, 128, 128);
|
|
std::size_t c = m_classif[fd];
|
|
|
|
if (c != std::size_t(-1))
|
|
color = m_label_colors[c];
|
|
|
|
m_color[fd] = CGAL::Color(color.red(), color.green(), color.blue());
|
|
}
|
|
}
|
|
else if (index_color == 2) // training
|
|
{
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
{
|
|
QColor color (128, 128, 128);
|
|
std::size_t c = m_training[fd];
|
|
std::size_t c2 = m_classif[fd];
|
|
|
|
if (c != std::size_t(-1))
|
|
color = m_label_colors[c];
|
|
|
|
float div = 1;
|
|
if (c != c2)
|
|
div = 2;
|
|
m_color[fd] = CGAL::Color(color.red() / div,
|
|
color.green() / div,
|
|
color.blue() / div);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Feature_handle feature = m_features[index_color - 3];
|
|
|
|
float max = 0.;
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
{
|
|
if (feature->value(fd) > max)
|
|
max = feature->value(fd);
|
|
}
|
|
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
{
|
|
float v = std::max (0.f, feature->value(fd) / max);
|
|
m_color[fd] = CGAL::Color((unsigned char)(ramp.r(v) * 255),
|
|
(unsigned char)(ramp.g(v) * 255),
|
|
(unsigned char)(ramp.b(v) * 255));
|
|
}
|
|
}
|
|
}
|
|
|
|
void Surface_mesh_item_classification::compute_features (std::size_t nb_scales)
|
|
{
|
|
std::cerr << "Computing features with " << nb_scales << " scale(s)" << std::endl;
|
|
m_features.clear();
|
|
|
|
if (m_generator != NULL)
|
|
delete m_generator;
|
|
|
|
Face_center_map fc_map (m_mesh->polyhedron());
|
|
|
|
m_generator = new Generator (*(m_mesh->polyhedron()), fc_map, nb_scales);
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
m_features.begin_parallel_additions();
|
|
#endif
|
|
|
|
m_generator->generate_point_based_features(m_features);
|
|
m_generator->generate_face_based_features(m_features);
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
m_features.end_parallel_additions();
|
|
#endif
|
|
|
|
delete m_sowf;
|
|
m_sowf = new Sum_of_weighted_features (m_labels, m_features);
|
|
#ifdef CGAL_LINKED_WITH_OPENCV
|
|
delete m_random_forest;
|
|
m_random_forest = new Random_forest (m_labels, m_features);
|
|
#endif
|
|
std::cerr << "Features = " << m_features.size() << std::endl;
|
|
}
|
|
|
|
void Surface_mesh_item_classification::train
|
|
(int classifier, unsigned int nb_trials,
|
|
std::size_t num_trees, std::size_t max_depth)
|
|
{
|
|
if (m_features.size() == 0)
|
|
{
|
|
std::cerr << "Error: features not computed" << std::endl;
|
|
return;
|
|
}
|
|
|
|
std::vector<std::size_t> training (num_faces(*(m_mesh->polyhedron())), std::size_t(-1));
|
|
std::vector<std::size_t> indices (num_faces(*(m_mesh->polyhedron())), std::size_t(-1));
|
|
|
|
std::vector<std::size_t> nb_label (m_labels.size(), 0);
|
|
std::size_t nb_total = 0;
|
|
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
{
|
|
training[fd] = m_training[fd];
|
|
if (training[fd] != std::size_t(-1))
|
|
{
|
|
nb_label[training[fd]] ++;
|
|
++ nb_total;
|
|
}
|
|
}
|
|
|
|
std::cerr << nb_total << " face(s) used for training ("
|
|
<< 100. * (nb_total / double(m_mesh->polyhedron()->faces().size())) << "% of the total):" << std::endl;
|
|
for (std::size_t i = 0; i < m_labels.size(); ++ i)
|
|
std::cerr << " * " << m_labels[i]->name() << ": " << nb_label[i] << " face(s)" << std::endl;
|
|
|
|
if (classifier == 0)
|
|
{
|
|
m_sowf->train<Concurrency_tag>(training, nb_trials);
|
|
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
|
|
m_labels, *m_sowf,
|
|
indices);
|
|
}
|
|
else if (classifier == 1)
|
|
{
|
|
m_ethz->train(training, true, num_trees, max_depth);
|
|
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
|
|
m_labels, *m_ethz,
|
|
indices);
|
|
}
|
|
else
|
|
{
|
|
#ifdef CGAL_LINKED_WITH_OPENCV
|
|
if (m_random_forest != NULL)
|
|
delete m_random_forest;
|
|
m_random_forest = new Random_forest (m_labels, m_features,
|
|
int(max_depth), 5, 15,
|
|
int(num_trees));
|
|
m_random_forest->train (training);
|
|
|
|
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
|
|
m_labels, *m_random_forest,
|
|
indices);
|
|
#endif
|
|
}
|
|
|
|
BOOST_FOREACH(face_descriptor fd, faces(*(m_mesh->polyhedron())))
|
|
m_classif[fd] = indices[fd];
|
|
|
|
if (m_index_color == 1 || m_index_color == 2)
|
|
change_color (m_index_color);
|
|
}
|
|
|
|
bool Surface_mesh_item_classification::run (int method, int classifier,
|
|
std::size_t subdivisions, double smoothing)
|
|
{
|
|
if (m_features.size() == 0)
|
|
{
|
|
std::cerr << "Error: features not computed" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (classifier == 0)
|
|
run (method, *m_sowf, subdivisions, smoothing);
|
|
else if (classifier == 1)
|
|
run (method, *m_ethz, subdivisions, smoothing);
|
|
#ifdef CGAL_LINKED_WITH_OPENCV
|
|
else
|
|
run (method, *m_random_forest, subdivisions, smoothing);
|
|
#endif
|
|
|
|
return true;
|
|
}
|