mirror of https://github.com/CGAL/cgal
210 lines
7.0 KiB
C++
210 lines
7.0 KiB
C++
#if defined (_MSC_VER) && !defined (_WIN64)
|
|
#pragma warning(disable:4244) // boost::number_distance::distance()
|
|
// converts 64 to 32 bits integers
|
|
#endif
|
|
|
|
#include <cstdlib>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
#include <CGAL/Simple_cartesian.h>
|
|
#include <CGAL/Classification.h>
|
|
#include <CGAL/Point_set_3.h>
|
|
#include <CGAL/Point_set_3/IO.h>
|
|
#include <CGAL/jet_estimate_normals.h>
|
|
#include <CGAL/Shape_detection_3.h>
|
|
|
|
#include <CGAL/Real_timer.h>
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
typedef CGAL::Parallel_tag Concurrency_tag;
|
|
#else
|
|
typedef CGAL::Sequential_tag Concurrency_tag;
|
|
#endif
|
|
|
|
typedef CGAL::Simple_cartesian<double> Kernel;
|
|
typedef Kernel::Point_3 Point;
|
|
typedef CGAL::Point_set_3<Point> Point_set;
|
|
typedef Kernel::Iso_cuboid_3 Iso_cuboid_3;
|
|
|
|
typedef Point_set::Point_map Pmap;
|
|
typedef Point_set::Vector_map Vmap;
|
|
typedef Point_set::Property_map<int> Imap;
|
|
typedef Point_set::Property_map<unsigned char> UCmap;
|
|
|
|
typedef CGAL::Shape_detection_3::Shape_detection_traits<Kernel, Point_set, Pmap, Vmap> SD_traits;
|
|
typedef CGAL::Shape_detection_3::Region_growing<SD_traits> Region_growing;
|
|
typedef CGAL::Shape_detection_3::Plane<SD_traits> Plane;
|
|
|
|
namespace Classification = CGAL::Classification;
|
|
|
|
typedef Classification::Label_handle Label_handle;
|
|
typedef Classification::Feature_handle Feature_handle;
|
|
typedef Classification::Label_set Label_set;
|
|
typedef Classification::Feature_set Feature_set;
|
|
|
|
typedef Classification::Local_eigen_analysis Local_eigen_analysis;
|
|
typedef Classification::Point_set_feature_generator<Kernel, Point_set, Pmap> Feature_generator;
|
|
|
|
typedef Classification::Cluster<Point_set, Pmap> Cluster;
|
|
|
|
|
|
int main (int argc, char** argv)
|
|
{
|
|
std::string filename = "data/b9.ply";
|
|
std::string filename_config = "data/b9_clusters_config.gz";
|
|
|
|
if (argc > 1)
|
|
filename = argv[1];
|
|
if (argc > 2)
|
|
filename_config = argv[2];
|
|
|
|
std::ifstream in (filename.c_str(), std::ios::binary);
|
|
Point_set pts;
|
|
|
|
std::cerr << "Reading input" << std::endl;
|
|
in >> pts;
|
|
|
|
std::cerr << "Estimating normals" << std::endl;
|
|
CGAL::Real_timer t;
|
|
t.start();
|
|
pts.add_normal_map();
|
|
CGAL::jet_estimate_normals<Concurrency_tag> (pts, 12);
|
|
t.stop();
|
|
std::cerr << "Done in " << t.time() << " second(s)" << std::endl;
|
|
t.reset();
|
|
|
|
Feature_set pointwise_features;
|
|
|
|
std::cerr << "Generating pointwise features" << std::endl;
|
|
t.start();
|
|
Feature_generator generator (pts, pts.point_map(),
|
|
5); // using 5 scales
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
pointwise_features.begin_parallel_additions();
|
|
#endif
|
|
|
|
generator.generate_point_based_features (pointwise_features);
|
|
generator.generate_normal_based_features (pointwise_features, pts.normal_map());
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
pointwise_features.end_parallel_additions();
|
|
#endif
|
|
|
|
t.stop();
|
|
std::cerr << "Done in " << t.time() << " second(s)" << std::endl;
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
//! [Cluster]
|
|
|
|
std::cerr << "Detecting planes" << std::endl;
|
|
t.start();
|
|
Region_growing::Parameters parameters;
|
|
parameters.min_points = 1;
|
|
parameters.epsilon = 1.0;
|
|
parameters.cluster_epsilon = 1.0;
|
|
parameters.normal_threshold = 0.9;
|
|
|
|
Region_growing region_growing;
|
|
region_growing.set_input (pts, pts.point_map(), pts.normal_map());
|
|
region_growing.add_shape_factory<Plane>();
|
|
region_growing.detect (parameters);
|
|
t.stop();
|
|
std::cerr << region_growing.shapes().end() - region_growing.shapes().begin() << " planes detected in "
|
|
<< t.time() << " second(s)" << std::endl;
|
|
t.reset();
|
|
|
|
std::cerr << "Creating clusters" << std::endl;
|
|
t.start();
|
|
std::vector<Cluster> clusters;
|
|
Classification::create_clusters_from_indices (pts, pts.point_map(),
|
|
CGAL::Shape_detection_3::Point_to_shape_index_map<SD_traits>
|
|
(pts, region_growing.planes()),
|
|
clusters);
|
|
t.stop();
|
|
std::cerr << clusters.size() << " clusters created in "
|
|
<< t.time() << " second(s)" << std::endl;
|
|
t.reset();
|
|
|
|
//! [Cluster]
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
std::cerr << "Computing cluster features" << std::endl;
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
//! [Eigen]
|
|
|
|
Local_eigen_analysis eigen = Local_eigen_analysis::create_from_point_clusters (clusters);
|
|
|
|
//! [Eigen]
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
t.start();
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
//! [Features]
|
|
|
|
Feature_set features;
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
features.begin_parallel_additions();
|
|
#endif
|
|
|
|
// First compute means of features
|
|
for (std::size_t i = 0; i < pointwise_features.size(); ++ i)
|
|
features.add<Classification::Feature::Cluster_mean_of_feature> (clusters, pointwise_features[i]);
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
features.end_parallel_additions();
|
|
features.begin_parallel_additions();
|
|
#endif
|
|
|
|
// Then compute variances of features (and remaining cluster features)
|
|
for (std::size_t i = 0; i < pointwise_features.size(); ++ i)
|
|
features.add<Classification::Feature::Cluster_variance_of_feature> (clusters,
|
|
pointwise_features[i], // i^th feature
|
|
features[i]); // mean of i^th feature
|
|
|
|
features.add<Classification::Feature::Cluster_size> (clusters);
|
|
features.add<Classification::Feature::Cluster_vertical_extent> (clusters);
|
|
|
|
for (std::size_t i = 0; i < 3; ++ i)
|
|
features.add<Classification::Feature::Eigenvalue> (clusters, eigen, (unsigned int)(i));
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
features.end_parallel_additions();
|
|
#endif
|
|
|
|
//! [Features]
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
t.stop();
|
|
|
|
// Add types
|
|
Label_set labels;
|
|
Label_handle ground = labels.add ("ground");
|
|
Label_handle vegetation = labels.add ("vegetation");
|
|
Label_handle roof = labels.add ("roof");
|
|
|
|
std::vector<int> label_indices(clusters.size(), -1);
|
|
|
|
std::cerr << "Using ETHZ Random Forest Classifier" << std::endl;
|
|
Classification::ETHZ_random_forest_classifier classifier (labels, features);
|
|
|
|
std::cerr << "Loading configuration" << std::endl;
|
|
std::ifstream in_config (filename_config, std::ios_base::in | std::ios_base::binary);
|
|
classifier.load_configuration (in_config);
|
|
|
|
std::cerr << "Classifying" << std::endl;
|
|
t.reset();
|
|
t.start();
|
|
Classification::classify<Concurrency_tag> (clusters, labels, classifier, label_indices);
|
|
t.stop();
|
|
|
|
std::cerr << "Classification done in " << t.time() << " second(s)" << std::endl;
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|