cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Degree.tex

49 lines
1.4 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::Degree}
\ccDefinition
This \ccc{AdaptableUnaryFunction} computes the degree
of a \ccc{PolynomialTraits_d::Polynomial_d} with respect to a certain variable.
The degree of $p$ with respect to a certain variable $x_i$,
is the highest power $e$ of $x_i$ such that the coefficient of $x_i^{e}$ in
$p$ is not zero.\\
For instance the degree of $p = x_0^2x_1^3+x_1^4$ with respect to $x_1$ is $4$.
The degree of the zero polynomial is set to $0$.
From the mathematical point of view this should
be $-infinity$, but this would imply an inconvenient return type.
\ccRefines
\ccc{AdaptableUnaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef int result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(argument_type p);}
{Computes the degree of $p$ with respect to the outermost variable $x_{d-1}$.}
\ccMethod{result_type operator()(argument_type p, int i);}
{Computes the degree of $p$ with respect to variable $x_i$.
\ccPrecond $0 \leq i < d$
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::TotalDegree}\\
\ccRefIdfierPage{PolynomialTraits_d::DegreeVector}
\end{ccRefConcept}