mirror of https://github.com/CGAL/cgal
49 lines
1.4 KiB
TeX
49 lines
1.4 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::Degree}
|
|
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableUnaryFunction} computes the degree
|
|
of a \ccc{PolynomialTraits_d::Polynomial_d} with respect to a certain variable.
|
|
|
|
The degree of $p$ with respect to a certain variable $x_i$,
|
|
is the highest power $e$ of $x_i$ such that the coefficient of $x_i^{e}$ in
|
|
$p$ is not zero.\\
|
|
For instance the degree of $p = x_0^2x_1^3+x_1^4$ with respect to $x_1$ is $4$.
|
|
|
|
The degree of the zero polynomial is set to $0$.
|
|
From the mathematical point of view this should
|
|
be $-infinity$, but this would imply an inconvenient return type.
|
|
|
|
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableUnaryFunction}
|
|
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
|
|
\ccCreationVariable{fo}
|
|
\ccTypedef{typedef int result_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(argument_type p);}
|
|
{Computes the degree of $p$ with respect to the outermost variable $x_{d-1}$.}
|
|
\ccMethod{result_type operator()(argument_type p, int i);}
|
|
{Computes the degree of $p$ with respect to variable $x_i$.
|
|
\ccPrecond $0 \leq i < d$
|
|
}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::TotalDegree}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::DegreeVector}
|
|
|
|
\end{ccRefConcept}
|