cgal/Polynomial/doc_tex/Polynomial_ref/Polynomial_d.tex

51 lines
1.7 KiB
TeX

\begin{ccRefConcept}{Polynomial_d}
\ccDefinition
A model of \ccRefName\ is representing a multivariate
polynomial in $d \geq 1$ variables over some basic ring $R$.
This type is denoted as the innermost coefficient.
A model of \ccRefName\ accompanied by a traits class
\ccc{CGAL::Polynomial_traits_d<Polynomial_d>}, which is a model of
\ccc{PolynomialTraits_d}.
Please have a look at the concept \ccc{PolynomialTraits_d}, since nearly
all functionality related to polynomials is provided by the traits.
%The innermost coefficient type of the polynomial is accessible through
%the traits, that is, the traits provides the public type
%\ccc{CGAL::Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_type}.
\ccRefines
\ccc{IntegralDomainWithoutDivision} \\
The algebraic structure of \ccc{Polynomial_d} depends on the
algebraic structure of \ccc{Innermost_coefficient_type}:
\begin{tabular}{|l|l|}
\hline
\ccc{Innermost_coefficient_type}&\ccc{Polynomial_d}\\
\hline
\ccc{IntegralDomainWithoutDivision}&\ccc{IntegralDomainWithoutDivision}\\
\ccc{IntegralDomain}&\ccc{IntegralDomain}\\
\ccc{UniqueFactorizationDomain}&\ccc{UniqueFactorizationDomain}\\
\ccc{EuclideanRing}&\ccc{UniqueFactorizationDomain}\\
\ccc{Field}&\ccc{UniqueFactorizationDomain}\\
\hline
\end{tabular}
Note: In case the polynomial is univariate and the innermost coefficient is a \ccc{Field} the polynomial is model of \ccc{EuclideanRing}.
%Note:The concept \ccc{Polynomial_1} refines \ccc{EuclideanRing} in case
%\ccc{Innermost_coefficient_type} is a \ccc{Field}.
\ccSeeAlso
\ccRefIdfierPage{AlgebraicStructureTraits}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccHasModels
\ccRefIdfierPage{CGAL::Polynomial<Coeff>}
\end{ccRefConcept}