cgal/Point_set_processing_3/include/CGAL/denoise_point_set.h

483 lines
15 KiB
C++

// Copyright (c) 2013-06 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Shihao Wu, Cl¨¦ment Jamin
#ifndef CGAL_DENOSISE_POINTS_WITH_NORMALS_H
#define CGAL_DENOSISE_POINTS_WITH_NORMALS_H
#include <CGAL/Search_traits_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>
#include <CGAL/Point_with_normal_3.h>
#include <iterator>
#include <set>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
#include <boost/version.hpp>
#if BOOST_VERSION >= 104000
#include <boost/property_map/property_map.hpp>
#else
#include <boost/property_map.hpp>
#endif
//#include "tbb/parallel_for.h"
//#include "tbb/blocked_range.h"
/// \cond SKIP_IN_MANUAL
namespace CGAL {
// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
namespace denoise_points_internal{
// Item in the Kd-tree: position (Point_3) + index
template <typename Kernel>
class Kd_tree_element : public Point_with_normal_3<Kernel>
{
public:
unsigned int index;
// basic geometric types
typedef typename CGAL::Origin Origin;
typedef CGAL::Point_with_normal_3<Kernel> Base;
Kd_tree_element(const Origin& o = ORIGIN, unsigned int id=0)
: Base(o), index(id)
{}
Kd_tree_element(const Base& p, unsigned int id=0)
: Base(p), index(id)
{}
Kd_tree_element(const Kd_tree_element& other)
: Base(other), index(other.index)
{}
};
// Helper class for the Kd-tree
template <typename Kernel>
class Kd_tree_gt : public Kernel
{
public:
typedef Kd_tree_element<Kernel> Point_3;
};
template <typename Kernel>
class Kd_tree_traits : public CGAL::Search_traits_3<Kd_tree_gt<Kernel> >
{
public:
typedef typename Kernel::Point_3 PointType;
};
/// compute bilateral projection for each point
/// according to their KNN neighborhood points
///
/// \pre `k >= 2`, radius > 0 , sharpness_sigma > 0 && sharpness_sigma < 90
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return
template <typename Kernel>
CGAL::Point_with_normal_3<Kernel>
compute_denoise_projection(
const CGAL::Point_with_normal_3<Kernel>& query, ///< 3D point to project
const std::vector<CGAL::Point_with_normal_3<Kernel> >& neighbor_pwns, ///<
const typename Kernel::FT radius, ///< accept neighborhood radius
const typename Kernel::FT sharpness_sigma ///< control sharpness(0-90)
)
{
CGAL_point_set_processing_precondition(radius > 0);
CGAL_point_set_processing_precondition(sharpness_sigma > 0
&& sharpness_sigma < 90);
// basic geometric types
typedef typename Kernel::FT FT;
typedef CGAL::Point_with_normal_3<Kernel> Pwn;
FT radius2 = radius * radius;
std::vector<Pwn> accept_neighbor_pwns;
FT weight = (FT)0.0;
FT iradius16 = -(FT)4.0/radius2;
FT project_dist_sum = FT(0.0);
FT project_weight_sum = FT(0.0);
Vector normal_sum = CGAL::NULL_VECTOR;
FT cos_sigma = cos(sharpness_sigma / 180.0 * 3.1415926);
FT sharpness_bandwidth = std::pow((CGAL::max)(1e-8,1-cos_sigma), 2);
for (unsigned int i = 0; i < neighbor_pwns.size(); i++)
{
const Point& np = neighbor_pwns[i].position();
const Vector& nn = neighbor_pwns[i].normal();
FT dist2 = CGAL::squared_distance(query.position(), np);
if (dist2 < radius2)
{
FT theta = std::exp(dist2 * iradius16);
FT psi = std::exp(-std::pow(1-query.normal()*nn, 2)/sharpness_bandwidth);
weight = theta * psi;
project_dist_sum += ((query.position() - np) * nn) * weight;
project_weight_sum += weight;
normal_sum = normal_sum + nn * weight;
}
}
Vector update_normal = normal_sum / project_weight_sum;
update_normal = update_normal / sqrt(update_normal.squared_length());
Point update_point = query.position() - update_normal *
(project_dist_sum / project_weight_sum);
return Pwn(update_point, update_normal);
}
/// Computes neighbors from kdtree.
///
/// \pre `k >= 2`.
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return neighbors pwn of query point.
template < typename Kernel,typename Tree >
std::vector<CGAL::Point_with_normal_3<Kernel> >
compute_kdtree_neighbors(
const CGAL::Point_with_normal_3<Kernel>& query, ///< 3D point
Tree& tree, ///< KD-tree
unsigned int k ///< number of neighbors
)
{
// basic geometric types
typedef typename Kernel::FT FT;
typedef CGAL::Point_with_normal_3<Kernel> Pwn;
// types for K nearest neighbors search
typedef denoise_points_internal::Kd_tree_traits<Kernel> Tree_traits;
typedef CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::iterator Search_iterator;
// performs k + 1 queries (if unique the query point is
// output first). search may be aborted when k is greater
// than number of input points
Neighbor_search search(tree,query,k+1);
Search_iterator search_iterator = search.begin();
++search_iterator;
FT max_distance = (FT)0.0;
unsigned int i;
std::vector<CGAL::Point_with_normal_3<Kernel> > neighbor_pwns;
for(i = 0; i < (k+1); i++)
{
if(search_iterator == search.end())
break; // premature ending
Pwn pwn = search_iterator->first;
neighbor_pwns.push_back(pwn);
++search_iterator;
}
// output average max spacing
return neighbor_pwns;
}
/// Computes max-spacing of one query point from K nearest neighbors.
///
/// \pre `k >= 2`.
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return max spacing.
template < typename Kernel,
typename Tree >
typename Kernel::FT
compute_max_spacing(
const CGAL::Point_with_normal_3<Kernel>& query, ///< 3D point
Tree& tree, ///< KD-tree
unsigned int k) ///< number of neighbors
{
// basic geometric types
typedef typename Kernel::FT FT;
typedef CGAL::Point_with_normal_3<Kernel> Pwn;
// types for K nearest neighbors search
typedef denoise_points_internal::Kd_tree_traits<Kernel> Tree_traits;
typedef CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::iterator Search_iterator;
// performs k + 1 queries (if unique the query point is
// output first). search may be aborted when k is greater
// than number of input points
Neighbor_search search(tree,query,k+1);
Search_iterator search_iterator = search.begin();
++search_iterator;
FT max_distance = (FT)0.0;
unsigned int i;
for(i=0;i<(k+1);i++)
{
if(search_iterator == search.end())
break; // premature ending
Pwn pwn = search_iterator->first;
double dist2 = CGAL::squared_distance(query.position(), pwn.position());
max_distance = (CGAL::max)(dist2, max_distance);
++search_iterator;
}
// output max spacing
return std::sqrt(max_distance);
}
}
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
//=============================================================================
/// \ingroup PkgPointSetProcessing
///
/// A function for bilateral point set denoising(smoothing) with sharp features
/// More information see: http://web.siat.ac.cn/~huihuang/EAR/EAR_page.html
/// \pre normals must be unit vectors
///
/// @tparam ForwardIterator iterator over input points.
/// @tparam PointPMap is a model of `ReadablePropertyMap`
/// with a value_type = Point_3<Kernel>.
/// It can be omitted if ForwardIterator value_type is convertible to
/// Point_3<Kernel>.
/// @tparam Kernel Geometric traits class.
/// It can be omitted and deduced automatically from PointPMap value_type.
///
/// @return average point move error.
// This variant requires all parameters.
template <typename ForwardIterator,
typename PointPMap,
typename NormalPMap,
typename Kernel>
double
denoise_points_with_normals(
ForwardIterator first, ///< iterator over the first input point.
ForwardIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap, ///< property map ForwardIterator -> Point_3.
NormalPMap normal_pmap, ///< property map ForwardIterator -> Vector_3.
const unsigned int k, ///< number of neighbors.
const typename Kernel::FT sharpness_sigma, ///< control sharpness(0-90)
const Kernel& /*kernel*/) ///< geometric traits.
{
// basic geometric types
typedef typename Kernel::Point_3 Point;
typedef typename CGAL::Point_with_normal_3<Kernel> Pwn;
typedef typename std::vector<Pwn> Pwn_set;
typedef typename Kernel::Vector_3 Vector;
typedef typename Kernel::FT FT;
CGAL_point_set_processing_precondition(first != beyond);
CGAL_point_set_processing_precondition(k > 1);
// types for K nearest neighbors search structure
typedef denoise_points_internal::
Kd_tree_element<Kernel> Kd_tree_element;
typedef denoise_points_internal::Kd_tree_traits<Kernel> Tree_traits;
typedef CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::Tree Tree;
typedef typename Neighbor_search::iterator Search_iterator;
// copy points and normals
Pwn_set pwn_set;
for(ForwardIterator it = first; it != beyond; ++it)
{
#ifdef CGAL_USE_PROPERTY_MAPS_API_V1
Point& p = get(point_pmap, it);
Vector& n = get(normal_pmap, it);
pwn_set.push_back(Pwn(p, n));
#else
Point& p = get(point_pmap, *it);
Vector& n = get(normal_pmap, *it);
pwn_set.push_back(Pwn(p, n));
#endif
}
unsigned int nb_points = pwn_set.size();
CGAL::Timer task_timer;
task_timer.start();
std::cout << "Initilization and guess spacing: " << std::endl;
// initiate a KD-tree search for points
unsigned int i;
std::vector<Kd_tree_element> treeElements;
for (i = 0 ; i < pwn_set.size(); i++)
{
Pwn& pwn = pwn_set[i];
treeElements.push_back(Kd_tree_element(pwn, i));
}
Tree tree(treeElements.begin(), treeElements.end());
// Guess spacing
FT guess_neighbor_radius = (FT)(std::numeric_limits<double>::max)();
for(i = 0; i < nb_points; i++)
{
FT max_spacing = denoise_points_internal::
compute_max_spacing<Kernel,Tree>(pwn_set[i], tree, k);
guess_neighbor_radius = (CGAL::max)(max_spacing, guess_neighbor_radius);
}
guess_neighbor_radius *= 0.95;
long memory = CGAL::Memory_sizer().virtual_size();
std::cout << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated" << std::endl;
task_timer.start();
std::cout << "Compute all neighbors: " << std::endl;
// compute all neighbors
std::vector< Pwn_set> pwn_neighbors_set(nb_points);
for (i = 0 ; i < nb_points; i++)
{
Pwn pwn = pwn_set[i];
pwn_neighbors_set[i] = denoise_points_internal::
compute_kdtree_neighbors<Kernel, Tree>(pwn, tree, k);
}
memory = CGAL::Memory_sizer().virtual_size();
std::cout << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated" << std::endl;
task_timer.stop();
task_timer.start();
std::cout << "Compute update points and normals: " << std::endl;
// update points and normals
Pwn_set update_pwn_set(nb_points);
for (i = 0 ; i < nb_points; i++)
{
Pwn pwn = pwn_set[i];
update_pwn_set[i] = denoise_points_internal::
compute_denoise_projection<Kernel>
(pwn,
pwn_neighbors_set[i],
guess_neighbor_radius,
sharpness_sigma);
}
memory = CGAL::Memory_sizer().virtual_size();
std::cout << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated" << std::endl;
task_timer.stop();
// save results
FT sum_move_error = 0;
ForwardIterator it;
for(i = 0, it = first; it != beyond; ++it, i++)
{
#ifdef CGAL_USE_PROPERTY_MAPS_API_V1
Point& p = get(point_pmap, it);
Vector& n = get(normal_pmap, it);
sum_move_error += CGAL::squared_distance(p, update_pwn_set[i].position());
p = update_pwn_set[i].position();
n = update_pwn_set[i].normal();
#else
Point& p = get(point_pmap, *it);
Vector& n = get(normal_pmap, *it);
sum_move_error += CGAL::squared_distance(p, update_pwn_set[i].position());
p = update_pwn_set[i].position();
n = update_pwn_set[i].normal();
#endif
}
return sum_move_error / nb_points;
}
/// @cond SKIP_IN_MANUAL
// This variant deduces the kernel from the point property map.
template <typename ForwardIterator,
typename PointPMap,
typename NormalPMap>
double
denoise_points_with_normals(
ForwardIterator first, ///< first input point.
ForwardIterator beyond, ///< past-the-end input point.
PointPMap point_pmap, ///< property map OutputIterator -> Point_3.
NormalPMap normal_pmap, ///< property map ForwardIterator -> Vector_3.
const unsigned int k, ///< number of neighbors.
double sharpness_sigma ///< control sharpness(0-90)
) ///< property map OutputIterator -> Vector_3.
{
typedef typename boost::property_traits<PointPMap>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel Kernel;
return denoise_points_with_normals(
first, beyond,
point_pmap,
normal_pmap,
k,
sharpness_sigma,
Kernel());
}
/// @endcond
/// @cond SKIP_IN_MANUAL
// This variant creates a default point property map = Dereference_property_map.
template <typename ForwardIterator,
typename NormalPMap>
double
denoise_points_with_normals(
ForwardIterator first, ///< first input point.
ForwardIterator beyond, ///< past-the-end input point.
const unsigned int k, ///< number of neighbors.
double sharpness_sigma, ///< control sharpness(0-90)
NormalPMap normal_pmap) ///< property map OutputIterator -> Vector_3.
{
return denoise_points_with_normals(
first, beyond,
#ifdef CGAL_USE_PROPERTY_MAPS_API_V1
make_dereference_property_map(first),
#else
make_identity_property_map(
typename std::iterator_traits<ForwardIterator>::value_type()),
#endif
normal_pmap,
k,
sharpness_sigma);
}
/// @endcond
} //namespace CGAL
#endif // CGAL_REGULARIZE_AND_SIMPLIFY_POINT_SET_H