cgal/Mesh_3/archive/applications/CGAL/min_dihedral_angle.h

148 lines
4.6 KiB
C++

// Copyright (c) 2007 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Laurent RINEAU
#ifndef CGAL_MIN_ANGLE_H
#define CGAL_MIN_ANGLE_H
#include <cmath>
template<typename Triangulation>
class Compute_min_angle
{
public:
typedef typename Triangulation::Cell_handle Cell_handle;
typedef typename Triangulation::Tetrahedron Tetrahedron;
typedef typename Triangulation::Point Point;
// constructor
Compute_min_angle(Triangulation _tr) : tr(_tr) {}
// computes the minimum angle between all 6 faces of a tetrahedra
double
operator()(const Cell_handle ch) const
{
double min_quotient = compute_quotient(ch, 0, 1, 2, 3);
min_quotient = (std::min)(min_quotient,
compute_quotient(ch, 0, 2, 1, 3));
min_quotient = (std::min)(min_quotient,
compute_quotient(ch, 0, 3, 1, 2));
min_quotient = (std::min)(min_quotient,
compute_quotient(ch, 1, 2, 0, 3));
min_quotient = (std::min)(min_quotient,
compute_quotient(ch, 1, 3, 0, 2));
min_quotient = (std::min)(min_quotient,
compute_quotient(ch, 2, 3, 0, 1));
const double volume = CGAL::to_double(tr.tetrahedron(ch).volume());
return asin( 1.5 * volume * min_quotient) * 180 / CGAL_PI;
}
private:
Triangulation tr;
double compute_quotient(const Cell_handle ch,
const int i,
const int j,
const int k,
const int l) const
{
const Point& pi = ch->vertex(i)->point();
const Point& pj = ch->vertex(j)->point();
const double edge_lenght =
CGAL::to_double(CGAL::sqrt(CGAL::squared_distance(pi, pj)));
const double area_k =
CGAL::to_double(CGAL::sqrt(tr.triangle(ch, k).squared_area()));
const double area_l =
CGAL::to_double(CGAL::sqrt(tr.triangle(ch, l).squared_area()));
return edge_lenght / area_k / area_l;
}
};
namespace CGAL {
namespace details {
template <typename K>
typename K::FT
min_dihedral_angle_aux_compute_quotient(const typename K::Point_3& p0,
const typename K::Point_3& p1,
const typename K::Point_3& p2,
const typename K::Point_3& p3,
K k = K())
{
typename K::Construct_triangle_3 make_triangle =
k.construct_triangle_3_object();
typename K::Compute_area_3 area =
k.compute_area_3_object();
typename K::Compute_squared_distance_3 sq_distance =
k.compute_squared_distance_3_object();
return CGAL::sqrt(sq_distance(p0, p1))
/ area(make_triangle(p0, p1, p3))
/ area(make_triangle(p0, p1, p2));
}
} // end namespace details;
template <typename K>
typename K::FT
minimum_dihedral_angle(const typename K::Point_3& p0,
const typename K::Point_3& p1,
const typename K::Point_3& p2,
const typename K::Point_3& p3,
K k = K())
{
typedef typename K::FT FT;
typename K::Compute_volume_3 volume =
k.compute_volume_3_object();
using details::min_dihedral_angle_aux_compute_quotient;
FT min_quotient =
min_dihedral_angle_aux_compute_quotient(p0, p1, p2, p3, k);
min_quotient =
(std::min)(min_quotient,
min_dihedral_angle_aux_compute_quotient(p0, p2, p1, p3, k));
min_quotient =
(std::min)(min_quotient,
min_dihedral_angle_aux_compute_quotient(p0, p3, p1, p2, k));
min_quotient =
(std::min)(min_quotient,
min_dihedral_angle_aux_compute_quotient(p1, p2, p0, p3, k));
min_quotient =
(std::min)(min_quotient,
min_dihedral_angle_aux_compute_quotient(p1, p3, p0, p2, k));
min_quotient =
(std::min)(min_quotient,
min_dihedral_angle_aux_compute_quotient(p2, p3, p0, p1, k));
// std::cerr << CGAL::sqrt(min_quotient) << " - "
// << volume(p0, p1, p2, p3) << " - "
// << FT(1.5) * volume(p0, p1, p2, p3) *
// min_quotient << "\n";
return std::asin( FT(1.5) * volume(p0, p1, p2, p3) * min_quotient )
* FT(180) / FT(CGAL_PI);
};
} // end namespace CGAL
#endif // CGAL_MIN_ANGLE_H