cgal/Surface_mesh_parameterization/include/CGAL/Two_vertices_parameterizer_3.h

272 lines
9.5 KiB
C++

// Copyright (c) 2005 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Saboret, Pierre Alliez, Bruno Levy
#ifndef CGAL_TWO_VERTICES_PARAMETERIZER_3_H_INCLUDED
#define CGAL_TWO_VERTICES_PARAMETERIZER_3_H_INCLUDED
#include <CGAL/surface_mesh_parameterization_assertions.h>
#include <CGAL/Parameterizer_traits_3.h>
#include <cfloat>
#include <climits>
namespace CGAL {
//
// Declaration
//
/// The class Two_vertices_parameterizer_3
/// parameterizes two extreme vertices of a 3D surface.
/// This kind of border parameterization is used by free border parameterizations.
///
/// Implementation note:
/// To simplify the implementation, BorderParameterizer_3 models know only the
/// ParameterizationMesh_3 class. They do not know the parameterization algorithm
/// requirements or the kind of sparse linear system used.
///
/// \models BorderParameterizer_3
///
/// ## Design Pattern ##
/// BorderParameterizer_3 models are Strategies [GHJV95]: they implement
/// a strategy of border parameterization for models of ParameterizationMesh_3.
template<class ParameterizationMesh_3> //< 3D surface
class Two_vertices_parameterizer_3
{
// Public types
public:
/// Export ParameterizationMesh_3 template parameter
typedef ParameterizationMesh_3 Adaptor;
// Private types
private:
// Mesh_Adaptor_3 subtypes:
typedef typename Adaptor::NT NT;
typedef typename Adaptor::Point_2 Point_2;
typedef typename Adaptor::Point_3 Point_3;
typedef typename Adaptor::Vector_2 Vector_2;
typedef typename Adaptor::Vector_3 Vector_3;
typedef typename Adaptor::Facet Facet;
typedef typename Adaptor::Facet_handle Facet_handle;
typedef typename Adaptor::Facet_const_handle
Facet_const_handle;
typedef typename Adaptor::Facet_iterator Facet_iterator;
typedef typename Adaptor::Facet_const_iterator
Facet_const_iterator;
typedef typename Adaptor::Vertex Vertex;
typedef typename Adaptor::Vertex_handle Vertex_handle;
typedef typename Adaptor::Vertex_const_handle
Vertex_const_handle;
typedef typename Adaptor::Vertex_iterator Vertex_iterator;
typedef typename Adaptor::Vertex_const_iterator
Vertex_const_iterator;
typedef typename Adaptor::Border_vertex_iterator
Border_vertex_iterator;
typedef typename Adaptor::Border_vertex_const_iterator
Border_vertex_const_iterator;
typedef typename Adaptor::Vertex_around_facet_circulator
Vertex_around_facet_circulator;
typedef typename Adaptor::Vertex_around_facet_const_circulator
Vertex_around_facet_const_circulator;
typedef typename Adaptor::Vertex_around_vertex_circulator
Vertex_around_vertex_circulator;
typedef typename Adaptor::Vertex_around_vertex_const_circulator
Vertex_around_vertex_const_circulator;
// Public operations
public:
// Default constructor, copy constructor and operator =() are fine.
/// Map two extreme vertices of the 3D mesh and mark them as "parameterized".
typename Parameterizer_traits_3<Adaptor>::Error_code
parameterize_border(Adaptor& mesh);
/// Indicate if border's shape is convex.
/// Meaningless for free border parameterization algorithms.
bool is_border_convex () { return false; }
};
//
// Implementation
//
// Map two extreme vertices of the 3D mesh and mark them as "parameterized".
template<class Adaptor>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Two_vertices_parameterizer_3<Adaptor>::parameterize_border(Adaptor& mesh)
{
Vertex_iterator it;
// Nothing to do if no border
if (mesh.mesh_main_border_vertices_begin() == mesh.mesh_main_border_vertices_end())
return Parameterizer_traits_3<Adaptor>::ERROR_BORDER_TOO_SHORT;
// Get mesh's bounding box
double xmin = (std::numeric_limits<double>::max)() ;
double ymin = (std::numeric_limits<double>::max)() ;
double zmin = (std::numeric_limits<double>::max)() ;
double xmax = (std::numeric_limits<double>::min)() ;
double ymax = (std::numeric_limits<double>::min)() ;
double zmax = (std::numeric_limits<double>::min)() ;
for (it = mesh.mesh_vertices_begin(); it != mesh.mesh_vertices_end(); it++)
{
Point_3 position = mesh.get_vertex_position(it);
xmin = (std::min)(position.x(), xmin) ;
ymin = (std::min)(position.y(), ymin) ;
zmin = (std::min)(position.z(), zmin) ;
xmax = (std::max)(position.x(), xmax) ;
ymax = (std::max)(position.y(), ymax) ;
zmax = (std::max)(position.z(), zmax) ;
}
// Find longest bounding box axes
double dx = xmax - xmin ;
double dy = ymax - ymin ;
double dz = zmax - zmin ;
enum { X_AXIS, Y_AXIS, Z_AXIS } longest_axis, second_longest_axis;
if(dx < dy && dx < dz) {
if(dy > dz) {
longest_axis = Y_AXIS;
second_longest_axis = Z_AXIS;
} else {
longest_axis = Z_AXIS;
second_longest_axis = Y_AXIS;
}
} else if(dy < dx && dy < dz) {
if(dx > dz) {
longest_axis = X_AXIS;
second_longest_axis = Z_AXIS;
} else {
longest_axis = Z_AXIS;
second_longest_axis = X_AXIS;
}
} else { // (dz < dx && dz < dy)
if(dx > dy) {
longest_axis = X_AXIS;
second_longest_axis = Y_AXIS;
} else {
longest_axis = Y_AXIS;
second_longest_axis = X_AXIS;
}
}
Vector_3 V1, // bounding box' longest axis
V2 ; // bounding box' 2nd longest axis
double V1_min=0, V1_max=0; // bounding box' dimensions along V1
double V2_min=0, V2_max=0; // bounding box' dimensions along V2
switch (longest_axis)
{
case X_AXIS:
V1 = Vector_3(1,0,0) ;
V1_min = xmin;
V1_max = xmax;
break;
case Y_AXIS:
V1 = Vector_3(0,1,0) ;
V1_min = ymin;
V1_max = ymax;
break;
case Z_AXIS:
V1 = Vector_3(0,0,1) ;
V1_min = zmin;
V1_max = zmax;
break;
default:
CGAL_surface_mesh_parameterization_assertion(false);
}
switch (second_longest_axis)
{
case X_AXIS:
V2 = Vector_3(1,0,0) ;
V2_min = xmin;
V2_max = xmax;
break;
case Y_AXIS:
V2 = Vector_3(0,1,0) ;
V2_min = ymin;
V2_max = ymax;
break;
case Z_AXIS:
V2 = Vector_3(0,0,1) ;
V2_min = zmin;
V2_max = zmax;
break;
default:
CGAL_surface_mesh_parameterization_assertion(false);
}
// Project onto longest bounding box axes,
// Set extrema vertices' (u,v) in unit square and mark them as "parameterized"
Vertex_handle vxmin = NULL ;
double umin = (std::numeric_limits<double>::max)() ;
double vmin = (std::numeric_limits<double>::max)(), vmax= (std::numeric_limits<double>::min)();
Vertex_handle vxmax = NULL ;
double umax = (std::numeric_limits<double>::min)() ;
for (it = mesh.mesh_vertices_begin(); it != mesh.mesh_vertices_end(); it++)
{
Point_3 position = mesh.get_vertex_position(it);
Vector_3 position_as_vector = position - Point_3(0,0,0);
// coordinate along the bounding box' main axes
double u = position_as_vector * V1 ;
double v = position_as_vector * V2 ;
// convert to unit square coordinates
CGAL_surface_mesh_parameterization_assertion(V1_max > V1_min);
CGAL_surface_mesh_parameterization_assertion(V2_max > V2_min);
u = (u - V1_min) / (V1_max - V1_min);
v = (v - V2_min) / (V2_max - V2_min);
mesh.set_vertex_uv(it, Point_2(u,v)) ; // useful only for vxmin and vxmax
if(u < umin || (u==umin && v < vmin) ) {
vxmin = it ;
umin = u ;
vmin = v ;
}
if(u > umax || (u==umax && v > vmax) ){
vxmax = it ;
umax = u ;
vmax = v ;
}
}
mesh.set_vertex_parameterized(vxmin, true) ;
mesh.set_vertex_parameterized(vxmax, true) ;
#ifdef DEBUG_TRACE
std::cerr << " map two vertices..." << std::endl;
// std::cerr << " #" << mesh.get_vertex_index(vxmin) << "(" << vxmin->vertex()->index() << ") parameterized " << std::endl;
// std::cerr << " #" << mesh.get_vertex_index(vxmax) << "(" << vxmax->vertex()->index() << ") parameterized " << std::endl;
#endif
return Parameterizer_traits_3<Adaptor>::OK;
}
} //namespace CGAL
#endif //CGAL_TWO_VERTICES_PARAMETERIZER_3_H_INCLUDED