cgal/Modular_arithmetic/include/CGAL/Modular_traits.h

208 lines
6.3 KiB
C++

//Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
#ifndef CGAL_MODULAR_TRAITS_H
#define CGAL_MODULAR_TRAITS_H 1
#include <CGAL/basic.h>
#include <CGAL/Modular.h>
#include <CGAL/leda_integer.h>
#include <CGAL/Sqrt_extension.h>
#include <vector>
namespace CGAL {
/*! \ingroup CGAL_Modular_traits_spec
\brief A model of concept ModularTraits.
This is the definition of general class template,
for unsupported types. Note that this support is optional.
\see CGAL_Modular_traits_spec for supported types.
*/
template<class NT_>
class Modular_traits{
public:
typedef NT_ NT;
typedef ::CGAL::Tag_false Is_convertible;
typedef ::CGAL::Null_functor Modular_NT;
typedef ::CGAL::Null_functor Modular_image;
typedef ::CGAL::Null_functor Modular_image_inv;
};
// The MODULAR_TRAITS specializations for some builtin types
// =========================================================================
/*! \ingroup CGAL_Modular_traits_spec
\brief Specialization of CGAL::Modular_traits for \c int.
A model of concept ModularTraits, supports \c int.
*/
template<>
class Modular_traits<int>{
public:
typedef int NT;
typedef ::CGAL::Tag_true Is_convertible;
typedef Modular Modular_NT;
struct Modular_image{
Modular_NT operator()(int i){
return Modular_NT(i);
}
};
struct Modular_image_inv{
NT operator()(const Modular& x){
return x.get_value();
}
};
};
/*! \ingroup CGAL_Modular_traits_spec
\brief Specialization of CGAL::Modular_traits for \c long.
A model of concept ModularTraits, supports \c long.
*/
template<>
class Modular_traits<long>{
public:
typedef long NT;
typedef ::CGAL::Tag_true Is_convertible;
typedef Modular Modular_NT;
struct Modular_image{
Modular_NT operator()(long i){
return Modular_NT(i);
}
};
struct Modular_image_inv{
NT operator()(const Modular& x){
return NT(x.get_value());
}
};
};
// TODO: mv to leda_integer.h
template<>
class Modular_traits< ::leda::integer > {
typedef Modular MOD;
public:
typedef ::leda::integer NT;
typedef ::CGAL::Tag_true Is_convertible;
typedef MOD Modular_NT;
struct Modular_image{
Modular_NT operator()(const NT& a){
return Modular_NT ((a%NT(MOD::get_current_prime())).to_long());
}
};
struct Modular_image_inv{
NT operator()(const Modular& x){
return NT(x.get_value());
}
};
};
//--------------------------------
// TODO : mv to Sqrt_extension.h
template< class COEFF, class ROOT>
class Modular_traits< Sqrt_extension<COEFF,ROOT> > {
private:
typedef Sqrt_extension<COEFF,ROOT> EXT;
typedef Modular_traits<COEFF> MT_COEFF;
typedef Modular_traits<ROOT> MT_ROOT;
typedef typename MT_COEFF::Modular_NT Modular_NT_coeff;
typedef typename MT_ROOT::Modular_NT Modular_NT_root;
public:
typedef Sqrt_extension<COEFF, ROOT > NT;
typedef typename MT_COEFF::Is_convertible Is_convertible;
typedef Sqrt_extension<Modular_NT_coeff, Modular_NT_root> Modular_NT;
struct Modular_image{
Modular_NT operator()(const EXT& a){
typename MT_ROOT::Modular_image mod_image_root;
typename MT_COEFF::Modular_image mod_image_coeff;
Modular_NT_root root_mod = mod_image_root(a.root());
if(root_mod != Modular_NT_root(0)){
return Modular_NT(mod_image_coeff(a.a0()),
mod_image_coeff(a.a1()),
root_mod);
}else{
return Modular_NT(mod_image_coeff(a.a0()));
}
}
};
struct Modular_image_inv{
NT operator()(const Modular_NT& a){
typename MT_ROOT::Modular_image_inv mod_image_inv_root;
typename MT_COEFF::Modular_image_inv mod_image_inv_coeff;
if(a.is_extended()){
return NT(
mod_image_inv_coeff(a.a0()),
mod_image_inv_coeff(a.a1()),
mod_image_inv_root(a.root()));
}else{
return NT(mod_image_inv_coeff(a.a0()));
}
}
};
};
template < typename Coeffcient > class Polynomial;
/*! \ingroup NiX_Polynomial
* \ingroup NiX_Modular_traits_spec
* \brief Specialization of Modular_traits for NiX::Polynomial.
*
* NiX::Modular_traits::Modular_image maps the coefficients of a polynomial
* to their Modular_image and returns the resulting polynomial.
*/
template< class COEFF >
class Modular_traits< Polynomial<COEFF> > {
private:
typedef Modular_traits<COEFF> Mtr;
public:
typedef Polynomial<COEFF> NT;
typedef Modular_traits<NT> Self;
typedef typename Mtr::Is_convertible Is_convertible;
typedef Polynomial<typename Mtr::Modular_NT> Modular_NT;
struct Modular_image{
Modular_NT operator()(const NT& p){
std::vector<typename Mtr::Modular_NT> V;
typename Mtr::Modular_image modular_image;
for(int i=0; i<=p.degree();i++)
V.push_back(modular_image(p[i]));
return Modular_NT(V.begin(),V.end());
}
};
struct Modular_image_inv{
NT operator()(const Modular_NT& p){
std::vector<COEFF> V;
typename Mtr::Modular_image_inv modular_image_inv;
for(int i=0; i<=p.degree();i++)
V.push_back(modular_image_inv(p[i]));
return NT(V.begin(),V.end());
}
};
};
// TODO: put this into Modular_arithmetic/src/
int primes[64] = {
67089287,67089299,67089329,67089377,67089461,67089469,67089479,67089511,
67089527,67089541,67089577,67089587,67089619,67089683,67089697,67089707,
67089721,67089733,67089739,67089751,67089793,67089809,67089811,67089829,
67089839,67089857,67089877,67089907,67089943,67089949,67089989,67090013,
67090027,67090031,67090033,67090043,67090061,67090073,67090091,67090099,
67090117,67090129,67090151,67090171,67090189,67090207,67090217,67090223,
67090229,67090237,67090259,67090271,67090307,67090321,67090343,67090351,
67090399,67090403,67090411,67090433,67090451,67090459,67090489,67090519
};
}///namespace CGAL
#endif //#ifnedef CGAL_MODULAR_TRAITS_H 1