cgal/Old_Packages/C2/include/CGAL/Cartesian/Rotation_rep_2.h

166 lines
4.6 KiB
C++

#ifndef CGAL_CARTESIAN_ROTATION_REP_2_H
#define CGAL_CARTESIAN_ROTATION_REP_2_H
#ifndef CGAL_RATIONAL_ROTATION_H
#include <CGAL/rational_rotation.h>
#endif // CGAL_RATIONAL_ROTATION_H
CGAL_BEGIN_NAMESPACE
template < class R >
class Rotation_repC2: public Aff_transformation_rep_baseC2<R>
{
friend class Aff_transformation_repC2<R>;
friend class Translation_repC2<R>;
friend class Scaling_repC2<R>;
public:
typedef Aff_transformation_rep_baseC2<R> Aff_t_base;
typedef typename Aff_t_base::FT FT;
typedef typename Aff_t_base::RT RT;
typedef typename Aff_t_base::Point_2 Point_2;
typedef typename Aff_t_base::Vector_2 Vector_2;
typedef typename Aff_t_base::Direction_2 Direction_2;
typedef typename Aff_t_base::Aff_transformation_2 Aff_transformation_2;
typedef Aff_transformation_repC2<R> Transformation;
typedef Translation_repC2<R> Translation;
typedef Rotation_repC2<R> Rotation;
typedef Scaling_repC2<R> Scaling;
Rotation_repC2() {}
Rotation_repC2(const FT &sinus, const FT &cosinus)
: _sinus(sinus), _cosinus(cosinus) {}
Rotation_repC2(const Direction_2 &d,
const FT &eps_num,
const FT &eps_den = FT(1))
{
FT sin_num;
FT cos_num;
FT denom;
rational_rotation_approximation(d.vector().x(),
d.vector().y(),
sin_num,
cos_num,
denom,
eps_num,
eps_den);
_sinus = sin_num/denom;
_cosinus = cos_num/denom;
}
Point_2 transform(const Point_2 &p) const
{
return Point_2(_cosinus * p.x() - _sinus * p.y(),
_sinus * p.x() + _cosinus * p.y());
}
Vector_2 transform(const Vector_2 &v) const
{
return Vector_2(_cosinus * v.x() - _sinus * v.y(),
_sinus * v.x() + _cosinus * v.y());
}
Direction_2 transform(const Direction_2 &d) const
{
Vector_2 v = d.vector();
return Direction_2(_cosinus * v.x() - _sinus * v.y(),
_sinus * v.x() + _cosinus * v.y());
}
Aff_transformation_2 inverse() const
{
return Aff_transformation_2(ROTATION, - _sinus, _cosinus, FT(1));
}
Aff_transformation_2 operator*(const Aff_t_base &t)
{
return t.compose(*this);
}
Aff_transformation_2 compose(const Translation &t) const
{
return Aff_transformation_2(_cosinus,
-_sinus,
t._translationvector.x(),
_sinus,
_cosinus,
t._translationvector.y());
}
virtual Aff_transformation_2 compose(const Rotation &t) const
{
return Aff_transformation_2(ROTATION,
t._sinus*_cosinus + t._cosinus*_sinus,
t._cosinus*_cosinus-t._sinus*_sinus );
}
virtual Aff_transformation_2 compose(const Scaling &t) const
{
return Aff_transformation_2(t._scalefactor*_cosinus,
t._scalefactor*-_sinus,
t._scalefactor*_sinus,
t._scalefactor*_cosinus);
}
virtual Aff_transformation_2 compose(const Transformation &t) const
{
return Aff_transformation_2(_cosinus*t.t11 + _sinus*t.t12,
-_sinus*t.t11 + _cosinus*t.t12,
t.t13,
_cosinus*t.t21 + _sinus*t.t22,
-_sinus*t.t21 + _cosinus*t.t22,
t.t23);
}
virtual bool is_even() const
{
return true;
}
virtual FT cartesian(int i, int j) const
{
switch (i)
{
case 0: switch (j)
{
case 0: return _cosinus;
case 1: return -_sinus;
case 2: return FT(0);
}
case 1: switch (j)
{
case 0: return _sinus;
case 1: return _cosinus;
case 2: return FT(0);
}
case 2: switch (j)
{
case 0: return FT(0);
case 1: return FT(0);
case 2: return FT(1);
}
}
return FT(0);
}
virtual std::ostream &print(std::ostream &os) const
{
os << "Aff_transformationC2(" << _sinus << ", " << _cosinus << ")";
return os;
}
private:
FT _sinus;
FT _cosinus;
};
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_ROTATION_REP_2_H