mirror of https://github.com/CGAL/cgal
819 lines
34 KiB
C++
819 lines
34 KiB
C++
// Copyright (c) 2012
|
|
// Utrecht University (The Netherlands),
|
|
// ETH Zurich (Switzerland),
|
|
// INRIA Sophia-Antipolis (France),
|
|
// Max-Planck-Institute Saarbruecken (Germany),
|
|
// and Tel-Aviv University (Israel). All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org)
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s): Efi Fogel <efifogel@gmail.com>
|
|
// Shepard Liu <shepard0liu@gmail.com>
|
|
|
|
#ifndef CGAL_DRAW_ARRANGEMENT_2_H
|
|
#define CGAL_DRAW_ARRANGEMENT_2_H
|
|
|
|
#include <CGAL/license/Arrangement_on_surface_2.h>
|
|
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
#include <type_traits>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
|
|
#include <QApplication>
|
|
|
|
#include <CGAL/Arr_geodesic_arc_on_sphere_traits_2.h>
|
|
#include <CGAL/Arrangement_2.h>
|
|
#include <CGAL/Arrangement_on_surface_2.h>
|
|
#include <CGAL/Basic_viewer.h>
|
|
#include <CGAL/Graphics_scene.h>
|
|
#include <CGAL/Graphics_scene_options.h>
|
|
#include <CGAL/Random.h>
|
|
#include <CGAL/config.h>
|
|
#include <CGAL/Arr_observer.h>
|
|
#include <CGAL/unordered_flat_map.h>
|
|
#include <CGAL/Bbox_2.h>
|
|
#include <CGAL/Draw_aos/type_utils.h>
|
|
#include <CGAL/Draw_aos/Arr_viewer.h>
|
|
|
|
namespace CGAL {
|
|
|
|
namespace draw_aos {
|
|
|
|
template <typename Arr, typename GSOptions>
|
|
class Draw_arr_tool {
|
|
public:
|
|
using Halfedge_const_handle = typename Arr::Halfedge_const_handle;
|
|
using Vertex_const_handle = typename Arr::Vertex_const_handle;
|
|
using Face_const_handle = typename Arr::Face_const_handle;
|
|
using Ccb_halfedge_const_circulator = typename Arr::Ccb_halfedge_const_circulator;
|
|
using Inner_ccb_const_iterator = typename Arr::Inner_ccb_const_iterator;
|
|
using Outer_ccb_const_iterator = typename Arr::Outer_ccb_const_iterator;
|
|
using Gt = typename Arr::Geometry_traits_2;
|
|
using Point = typename Arr::Point_2;
|
|
using X_monotone_curve = typename Arr::X_monotone_curve_2;
|
|
|
|
/*! constructs
|
|
*/
|
|
Draw_arr_tool(Arr& a_aos, CGAL::Graphics_scene& a_gs, const GSOptions& a_gso) :
|
|
m_aos(a_aos),
|
|
m_gs(a_gs),
|
|
m_gso(a_gso)
|
|
{}
|
|
|
|
//! adds a face.
|
|
void add_face(Face_const_handle face) {
|
|
// std::cout << "add_face()\n";
|
|
for (Inner_ccb_const_iterator it = face->inner_ccbs_begin(); it != face->inner_ccbs_end(); ++it) add_ccb(*it);
|
|
|
|
if (! face->is_unbounded()) {
|
|
for (Outer_ccb_const_iterator it = face->outer_ccbs_begin(); it != face->outer_ccbs_end(); ++it) {
|
|
add_ccb(*it);
|
|
draw_region(*it);
|
|
}
|
|
}
|
|
}
|
|
|
|
//! adds a Connected Component of the Boundary.
|
|
void add_ccb(Ccb_halfedge_const_circulator circ) {
|
|
// std::cout << "add_ccb()\n";
|
|
auto curr = circ;
|
|
do {
|
|
auto new_face = curr->twin()->face();
|
|
if (m_visited.find(new_face) != m_visited.end()) continue;
|
|
m_visited[new_face] = true;
|
|
add_face(new_face);
|
|
} while(++curr != circ);
|
|
}
|
|
|
|
//! draws a region.
|
|
void draw_region(Ccb_halfedge_const_circulator circ) {
|
|
// std::cout << "draw_region()\n";
|
|
/* Check whether the traits has a member function called
|
|
* approximate_2_object() and if so check whether the return type, namely
|
|
* `Approximate_2` has an appropriate operator.
|
|
*
|
|
* C++20 supports concepts and `requires` expression; see, e.g.,
|
|
* https://en.cppreference.com/w/cpp/language/constraints; thus, the first
|
|
* condition above can be elegantly verified as follows:
|
|
* constexpr bool has_approximate_2_object =
|
|
* requires(const Gt& traits) { traits.approximate_2_object(); };
|
|
*
|
|
* C++17 has experimental constructs called is_detected and
|
|
* is_detected_v that can be used to achieve the same goal.
|
|
*
|
|
* For now we use C++14 features.
|
|
*/
|
|
if (m_gso.colored_face(m_aos, circ->face()))
|
|
m_gs.face_begin(m_gso.face_color(m_aos, circ->face()));
|
|
else
|
|
m_gs.face_begin();
|
|
|
|
const auto* traits = this->m_aos.geometry_traits();
|
|
auto ext = find_smallest(circ, *traits);
|
|
auto curr = ext;
|
|
|
|
do {
|
|
// Skip halfedges that are "antenas":
|
|
while(curr->face() == curr->twin()->face()) curr = curr->twin()->next();
|
|
while(curr->face() == curr->twin()->face()) curr = curr->twin()->next();
|
|
draw_region_impl1(*traits, curr);
|
|
curr = curr->next();
|
|
} while(curr != ext);
|
|
|
|
m_gs.face_end();
|
|
}
|
|
|
|
//! Compile time dispatching
|
|
|
|
//!
|
|
template <typename T, typename A, std::enable_if_t<!has_approximate_point_v<T, A>, int> = 0>
|
|
void draw_region_impl2(const T& /* traits */, const A& /* approximate */, Halfedge_const_handle curr)
|
|
{ draw_exact_region(curr); }
|
|
|
|
//!
|
|
template <typename T, typename A, std::enable_if_t<has_approximate_point_v<T, A>, int> = 0>
|
|
auto draw_region_impl2(const T& /* traits */, const A& approx, Halfedge_const_handle curr)
|
|
{ draw_approximate_region(curr, approx); }
|
|
|
|
/*! draws a region, where the traits does not has approximate_2_object.
|
|
*/
|
|
template <typename T, std::enable_if_t<!has_approximate_2_object_v<T> && !is_or_derived_from_agas_v<T>, int> = 0>
|
|
void draw_region_impl1(const T& /* traits */, Halfedge_const_handle curr)
|
|
{ draw_exact_region(curr); }
|
|
|
|
///
|
|
template <typename T, std::enable_if_t<has_approximate_2_object_v<T> && !is_or_derived_from_agas_v<T>, int> = 0>
|
|
auto draw_region_impl1(const T& traits, Halfedge_const_handle curr)
|
|
{ draw_region_impl2(traits, traits.approximate_2_object(), curr); }
|
|
|
|
/*! draws a geodesic region
|
|
*/
|
|
template <typename T, std::enable_if_t<is_or_derived_from_agas_v<T>, int> = 0>
|
|
void draw_region_impl1(const T& traits, Halfedge_const_handle curr) {
|
|
//! \todo not implemented yet; for now, we just draw the boundaries using draw_curve_impl1()
|
|
draw_curve_impl1(traits, curr->curve(), false, CGAL::IO::Color());
|
|
}
|
|
|
|
/*! draws a region using approximate coordinates.
|
|
* Call this member function only if the geometry traits is equipped with
|
|
* the coordinate-approximation functionality of a curve.
|
|
* This function must be inlined (e.g., a template) to enable the
|
|
* compiled-time dispatching in the function `draw_region()`.
|
|
*/
|
|
template <typename Approximate>
|
|
void draw_approximate_region(Halfedge_const_handle curr, const Approximate& approx) {
|
|
// std::cout << "draw_approximate_region()\n";
|
|
std::vector<typename Gt::Approximate_point_2> polyline;
|
|
double error(0.01); // TODO? (this->pixel_ratio());
|
|
bool l2r = curr->direction() == ARR_LEFT_TO_RIGHT;
|
|
approx(curr->curve(), error, std::back_inserter(polyline), l2r);
|
|
if (polyline.empty()) return;
|
|
auto it = polyline.begin();
|
|
auto prev = it++;
|
|
for (; it != polyline.end(); prev = it++) m_gs.add_point_in_face(*prev);
|
|
}
|
|
|
|
/*! draws an exact curve.
|
|
*/
|
|
template <typename XMonotoneCurve>
|
|
void draw_exact_curve(const XMonotoneCurve& curve, bool colored, const CGAL::IO::Color& c) {
|
|
const auto* traits = this->m_aos.geometry_traits();
|
|
auto ctr_min = traits->construct_min_vertex_2_object();
|
|
auto ctr_max = traits->construct_max_vertex_2_object();
|
|
m_gs.add_segment(ctr_min(curve), ctr_max(curve));
|
|
if (colored) m_gs.add_segment(ctr_min(curve), ctr_max(curve), c);
|
|
else m_gs.add_segment(ctr_min(curve), ctr_max(curve));
|
|
}
|
|
|
|
/*! draws a region in an exact manner.
|
|
* This fallback simply draws the curve in an exact manner (and even this is not guaranteed).
|
|
*/
|
|
void draw_exact_region(Halfedge_const_handle curr) { draw_exact_curve(curr->curve(), false, CGAL::IO::Color()); }
|
|
|
|
//! Add all faces.
|
|
template <typename Traits>
|
|
void add_faces(const Traits&)
|
|
{ for (auto it = m_aos.unbounded_faces_begin(); it != m_aos.unbounded_faces_end(); ++it) add_face(it); }
|
|
|
|
//! Compile time dispatching
|
|
|
|
/*! draws a point using approximate coordinates.
|
|
*/
|
|
template <typename Approximate>
|
|
void draw_approximate_point(const Point& p, const Approximate& approx, bool colored, const CGAL::IO::Color& color) {
|
|
if (colored) m_gs.add_point(approx(p), color);
|
|
else m_gs.add_point(approx(p));
|
|
}
|
|
|
|
//!
|
|
void draw_exact_point(const Point& p, bool colored, const CGAL::IO::Color& color) {
|
|
if (colored) m_gs.add_point(p, color);
|
|
else m_gs.add_point(p);
|
|
}
|
|
|
|
//!
|
|
template <typename T, typename A, std::enable_if_t<!has_approximate_point_v<T, A>, int> = 0>
|
|
void draw_point_impl2(const T& /* traits */, const A& /* approximate */, const Point& p, bool colored,
|
|
const CGAL::IO::Color& c)
|
|
{ draw_exact_point(p, colored, c); }
|
|
|
|
//!
|
|
template <typename T, typename A, std::enable_if_t<has_approximate_point_v<T, A>, int> = 0>
|
|
auto
|
|
draw_point_impl2(const T& /* traits */, const A& approx, const Point& p, bool colored, const CGAL::IO::Color& c)
|
|
{ draw_approximate_point(p, approx, colored, c); }
|
|
|
|
/*! draws a point, where the traits does not has approximate_2_object.
|
|
*/
|
|
template <typename T, std::enable_if_t<!has_approximate_2_object_v<T> && !is_or_derived_from_agas_v<T>, int> = 0>
|
|
void draw_point_impl1(const T& /* traits */, const Point& p, bool colored, const CGAL::IO::Color& c)
|
|
{ draw_exact_point(p, colored, c); }
|
|
|
|
/*! draws a point, where the traits does have approximate_2_object.
|
|
*/
|
|
template <typename T, std::enable_if_t<has_approximate_2_object_v<T> && !is_or_derived_from_agas_v<T>, int> = 0>
|
|
auto draw_point_impl1(const T& traits, const Point& p, bool colored, const CGAL::IO::Color& c)
|
|
{ draw_point_impl2(traits, traits.approximate_2_object(), p, colored, c); }
|
|
|
|
/*! draws a geodesic point.
|
|
*/
|
|
template <typename T, std::enable_if_t<is_or_derived_from_agas_v<T>, int> = 0>
|
|
void draw_point_impl1(const T& traits, const Point& p, bool colored, const CGAL::IO::Color& color) {
|
|
using Traits = T;
|
|
using Ak = typename Traits::Approximate_kernel;
|
|
using Approx_point_3 = typename Ak::Point_3;
|
|
|
|
auto approx = traits.approximate_2_object();
|
|
auto ap = approx(p);
|
|
auto x = ap.dx();
|
|
auto y = ap.dy();
|
|
auto z = ap.dz();
|
|
auto l = std::sqrt(x * x + y * y + z * z);
|
|
Approx_point_3 p3(x / l, y / l, z / l);
|
|
if (colored) m_gs.add_point(p3, color);
|
|
else m_gs.add_point(p3);
|
|
}
|
|
|
|
//! draws a point.
|
|
void draw_point(const Point& p, bool colored, const CGAL::IO::Color& c) {
|
|
const auto* traits = m_aos.geometry_traits();
|
|
draw_point_impl1(*traits, p, colored, c);
|
|
}
|
|
|
|
///
|
|
template <typename Kernel, int AtanX, int AtanY>
|
|
Halfedge_const_handle find_smallest(Ccb_halfedge_const_circulator circ,
|
|
Arr_geodesic_arc_on_sphere_traits_2<Kernel, AtanX, AtanY> const&)
|
|
{ return circ; }
|
|
|
|
/*! finds the halfedge incident to the lexicographically smallest vertex
|
|
* along the CCB, such that there is no other halfedge underneath.
|
|
*/
|
|
template <typename Traits>
|
|
Halfedge_const_handle find_smallest(Ccb_halfedge_const_circulator circ, const Traits&) {
|
|
// std::cout << "find_smallest()\n";
|
|
const auto* traits = this->m_aos.geometry_traits();
|
|
auto cmp_xy = traits->compare_xy_2_object();
|
|
auto cmp_y = traits->compare_y_at_x_right_2_object();
|
|
|
|
// Find the first halfedge directed from left to right
|
|
auto curr = circ;
|
|
do if (curr->direction() == CGAL::ARR_LEFT_TO_RIGHT) break;
|
|
while(++curr != circ);
|
|
Halfedge_const_handle ext = curr;
|
|
|
|
// Find the halfedge incident to the lexicographically smallest vertex,
|
|
// such that there is no other halfedge underneath.
|
|
do {
|
|
// Discard edges not directed from left to right:
|
|
if (curr->direction() != CGAL::ARR_LEFT_TO_RIGHT) continue;
|
|
|
|
auto res = cmp_xy(curr->source()->point(), ext->source()->point());
|
|
|
|
// Discard the edges inciden to a point strictly larger than the point
|
|
// incident to the stored extreme halfedge:
|
|
if (res == LARGER) continue;
|
|
|
|
// Store the edge inciden to a point strictly smaller:
|
|
if (res == SMALLER) {
|
|
ext = curr;
|
|
continue;
|
|
}
|
|
|
|
// The incident points are equal; compare the halfedges themselves:
|
|
if (cmp_y(curr->curve(), ext->curve(), curr->source()->point()) == SMALLER) ext = curr;
|
|
} while(++curr != circ);
|
|
|
|
return ext;
|
|
}
|
|
|
|
//! adds all elements to be drawn.
|
|
void add_elements() {
|
|
// std::cout << "add_elements()\n";
|
|
// std::cout << "ratio: " << this->pixel_ratio() << std::endl;
|
|
m_visited.clear();
|
|
|
|
if (m_aos.is_empty()) return;
|
|
|
|
if (m_gso.are_faces_enabled()) add_faces(*(this->m_aos.geometry_traits()));
|
|
|
|
// Add edges that do not separate faces.
|
|
if (m_gso.are_edges_enabled()) {
|
|
for (auto it = m_aos.edges_begin(); it != m_aos.edges_end(); ++it) {
|
|
if (it->face() != it->twin()->face()) {
|
|
if (m_gso.draw_edge(m_aos, it)) {
|
|
if (m_gso.colored_edge(m_aos, it))
|
|
draw_curve(it->curve(), true, m_gso.edge_color(m_aos, it));
|
|
else
|
|
draw_curve(it->curve(), false, CGAL::IO::Color());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add all points
|
|
if (m_gso.are_vertices_enabled()) {
|
|
for (auto it = m_aos.vertices_begin(); it != m_aos.vertices_end(); ++it) {
|
|
if (m_gso.colored_vertex(m_aos, it))
|
|
draw_point(it->point(), true, m_gso.vertex_color(m_aos, it));
|
|
else
|
|
draw_point(it->point(), false, CGAL::IO::Color());
|
|
}
|
|
}
|
|
|
|
m_visited.clear();
|
|
}
|
|
|
|
/*! draws a curve using approximate coordinates.
|
|
* Call this member function only of the geometry traits is equipped with
|
|
* the coordinate-aproximation functionality of a curve.
|
|
* This function must be inlined (e.g., a template) to enable the
|
|
* compiled-time dispatching in the function `draw_curve()`.
|
|
*/
|
|
template <typename XMonotoneCurve, typename Approximate>
|
|
void draw_approximate_curve(const XMonotoneCurve& curve,
|
|
const Approximate& approx,
|
|
bool colored,
|
|
const CGAL::IO::Color& c) {
|
|
// std::cout << "draw_approximate_curve\n";
|
|
std::vector<typename Gt::Approximate_point_2> polyline;
|
|
double error(0.01); // TODO? (this->pixel_ratio());
|
|
approx(curve, error, std::back_inserter(polyline));
|
|
if (polyline.empty()) return;
|
|
auto it = polyline.begin();
|
|
auto prev = it++;
|
|
for (; it != polyline.end(); prev = it++) {
|
|
if (colored) m_gs.add_segment(*prev, *it, c);
|
|
else m_gs.add_segment(*prev, *it);
|
|
}
|
|
}
|
|
|
|
///
|
|
template <typename T, typename A, std::enable_if_t<!has_approximate_point_v<T, A>, int> = 0>
|
|
void draw_curve_impl2(const T& /* traits */,
|
|
const A& /* approximate */,
|
|
const X_monotone_curve& xcv,
|
|
bool colored,
|
|
const CGAL::IO::Color& c)
|
|
{ draw_exact_curve(xcv, colored, c); }
|
|
|
|
///
|
|
template <typename T, typename A, std::enable_if_t<has_approximate_point_v<T, A>, int> = 0>
|
|
auto draw_curve_impl2(const T& /* traits */, const A& approx, const X_monotone_curve& xcv, bool colored,
|
|
const CGAL::IO::Color& c)
|
|
{ draw_approximate_curve(xcv, approx, colored, c); }
|
|
|
|
/*! draws a curve, where the traits does not has approximate_2_object.
|
|
*/
|
|
template <typename T, std::enable_if_t<!has_approximate_2_object_v<T> && !is_or_derived_from_agas_v<T>, int> = 0>
|
|
void draw_curve_impl1(const T& /* traits */, const X_monotone_curve& xcv, bool colored, const CGAL::IO::Color& c)
|
|
{ draw_exact_curve(xcv, colored, c); }
|
|
|
|
/*! draws a curve, where the traits does have approximate_2_object.
|
|
*/
|
|
template <typename T, std::enable_if_t<has_approximate_2_object_v<T> && !is_or_derived_from_agas_v<T>, int> = 0>
|
|
auto draw_curve_impl1(const T& traits, const X_monotone_curve& xcv, bool colored, const CGAL::IO::Color& c) {
|
|
using Approximate = typename Gt::Approximate_2;
|
|
draw_curve_impl2(traits, traits.approximate_2_object(), xcv, colored, c);
|
|
}
|
|
|
|
/*! draws a geodesic curve
|
|
*/
|
|
template <typename T, std::enable_if_t<is_or_derived_from_agas_v<T>, int> = 0>
|
|
void draw_curve_impl1(const T& traits, const X_monotone_curve& xcv, bool colored, const CGAL::IO::Color& c) {
|
|
// std::cout << "draw_curve (geodesic)\n";
|
|
using Traits = T;
|
|
using Ak = typename Traits::Approximate_kernel;
|
|
using Ap = typename Traits::Approximate_point_2;
|
|
using Approx_point_3 = typename Ak::Point_3;
|
|
|
|
auto approx = traits.approximate_2_object();
|
|
std::vector<Ap> apoints;
|
|
double error(0.01);
|
|
approx(xcv, error, std::back_inserter(apoints));
|
|
auto it = apoints.begin();
|
|
auto x = it->dx();
|
|
auto y = it->dy();
|
|
auto z = it->dz();
|
|
auto l = std::sqrt(x * x + y * y + z * z);
|
|
Approx_point_3 prev(x / l, y / l, z / l);
|
|
for (++it; it != apoints.end(); ++it) {
|
|
auto x = it->dx();
|
|
auto y = it->dy();
|
|
auto z = it->dz();
|
|
auto l = std::sqrt(x * x + y * y + z * z);
|
|
Approx_point_3 next(x / l, y / l, z / l);
|
|
if (colored) m_gs.add_segment(prev, next, c);
|
|
else m_gs.add_segment(prev, next);
|
|
prev = next;
|
|
}
|
|
}
|
|
|
|
//! draws a curve.
|
|
template <typename XMonotoneCurve>
|
|
void draw_curve(const XMonotoneCurve& curve, bool colored, const CGAL::IO::Color& c) {
|
|
/* Check whether the traits has a member function called
|
|
* approximate_2_object() and if so check whether the return type, namely
|
|
* `Approximate_2` has an appropriate operator.
|
|
*
|
|
* C++20 supports concepts and `requires` expression; see, e.g.,
|
|
* https://en.cppreference.com/w/cpp/language/constraints; thus, the first
|
|
* condition above can be elegantly verified as follows:
|
|
* constexpr bool has_approximate_2_object =
|
|
* requires(const Gt& traits) { traits.approximate_2_object(); };
|
|
*
|
|
* C++17 has experimental constructs called is_detected and
|
|
* is_detected_v that can be used to achieve the same goal.
|
|
*
|
|
* For now we use C++14 features.
|
|
*/
|
|
#if 0
|
|
if constexpr (std::experimental::is_detected_v<approximate_2_object_t, Gt>) {
|
|
const auto* traits = this->m_aos.geometry_traits();
|
|
auto approx = traits->approximate_2_object();
|
|
draw_approximate_curve(curve, approx);
|
|
return;
|
|
}
|
|
draw_exact_curve(curve);
|
|
#else
|
|
const auto* traits = this->m_aos.geometry_traits();
|
|
draw_curve_impl1(*traits, curve, colored, c);
|
|
#endif
|
|
}
|
|
|
|
protected:
|
|
Arr& m_aos;
|
|
CGAL::Graphics_scene& m_gs;
|
|
const GSOptions& m_gso;
|
|
std::unordered_map<Face_const_handle, bool> m_visited;
|
|
};
|
|
|
|
template <typename Value1, typename Value2, typename Range1, typename Range2>
|
|
static auto map_from_pair_ranges(Range1 range1, Range2 range2) {
|
|
CGAL_assertion_msg(range1.size() == range2.size(), "The two ranges must have the same size.");
|
|
auto begin = boost::make_zip_iterator(boost::make_tuple(range1.begin(), range2.begin()));
|
|
auto end = boost::make_zip_iterator(boost::make_tuple(range1.end(), range2.end()));
|
|
auto tuple_to_pair = [](const auto& t) { return std::make_pair(boost::get<0>(t), boost::get<1>(t)); };
|
|
return unordered_flat_map<Value1, Value2>(boost::make_transform_iterator(begin, tuple_to_pair),
|
|
boost::make_transform_iterator(end, tuple_to_pair));
|
|
}
|
|
|
|
/*! \brief tracking changes between an arrangement and its copy that will be later inserted to.
|
|
*
|
|
* \note tracks insertions only. If any other actions made(e.g. deletions, merging, etc), the state of the tracker
|
|
* instance may become invalid.
|
|
*
|
|
* \tparam Arrangement
|
|
*/
|
|
template <typename Arrangement>
|
|
class Arr_insertion_tracker : Arr_observer<Arrangement> {
|
|
using Base = Arr_observer<Arrangement>;
|
|
using Halfedge_handle = typename Arrangement::Halfedge_handle;
|
|
using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle;
|
|
using Face_handle = typename Arrangement::Face_handle;
|
|
using Face_const_handle = typename Arrangement::Face_const_handle;
|
|
using Vertex_handle = typename Arrangement::Vertex_handle;
|
|
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
|
using X_monotone_curve_2 = typename Arrangement::X_monotone_curve_2;
|
|
|
|
protected:
|
|
virtual void after_create_vertex(Vertex_handle v) override { m_vertex_map[v] = Vertex_const_handle(); }
|
|
|
|
virtual void after_create_edge(Halfedge_handle e) override {
|
|
m_halfedge_map[e] = Halfedge_const_handle();
|
|
m_halfedge_map[e->twin()] = Halfedge_const_handle(); // twin is created as well
|
|
}
|
|
|
|
virtual void before_split_edge(Halfedge_handle /* e */, Vertex_handle v,
|
|
const X_monotone_curve_2& /* c1 */,
|
|
const X_monotone_curve_2& /* c2 */) override
|
|
{ if (m_vertex_map.find(v) == m_vertex_map.end()) m_vertex_map[v] = Vertex_const_handle(); }
|
|
|
|
virtual void after_split_edge(Halfedge_handle e1, Halfedge_handle e2) override {
|
|
if (auto it = m_halfedge_map.find(e1); it == m_halfedge_map.end())
|
|
m_halfedge_map[e2] = e1;
|
|
else if (it->second == Halfedge_const_handle())
|
|
m_halfedge_map[e2] = Halfedge_const_handle(); // e1 has no corresponding edge in the original arrangement
|
|
else
|
|
m_halfedge_map[e2] = it->second; // e1 is created by splitting an existing edge
|
|
}
|
|
|
|
virtual void after_split_face(Face_handle f1, Face_handle f2, bool) override {
|
|
// Face cannot be created but by splitting an existing face.
|
|
if (auto it = m_face_map.find(f1); it == m_face_map.end())
|
|
m_face_map[f2] = f1;
|
|
else
|
|
m_face_map[f2] = it->second; // f1 is created by splitting an existing face
|
|
}
|
|
|
|
public:
|
|
Arr_insertion_tracker(Arrangement& arr) : Base(arr) {}
|
|
|
|
/*! \brief Query the original face of a given face.
|
|
*
|
|
* \param fh a valid face handle in the modified arrangement.
|
|
* \return Face_const_handle
|
|
*/
|
|
Face_const_handle original_face(Face_const_handle fh) const {
|
|
auto it = m_face_map.find(fh);
|
|
if (it == m_face_map.end()) return fh;
|
|
return it->second; // new face from splitting an existing face
|
|
}
|
|
|
|
/*! \brief Query the original halfedge of a given halfedge.
|
|
*
|
|
* \param heh a valid halfedge handle in the modified arrangement.
|
|
* \return Halfedge_const_handle
|
|
*/
|
|
Halfedge_const_handle original_halfedge(Halfedge_const_handle he) const {
|
|
auto it = m_halfedge_map.find(he);
|
|
if (it == m_halfedge_map.end()) return he;
|
|
if (it->second == Halfedge_const_handle()) return Halfedge_const_handle(); // newly created halfedge
|
|
return it->second;
|
|
}
|
|
|
|
/*! \brief Query the original vertex of a given vertex.
|
|
*
|
|
* \param vh a valid vertex handle in the modified arrangement.
|
|
* \return Vertex_const_handle
|
|
*/
|
|
Vertex_const_handle original_vertex(Vertex_const_handle vh) const {
|
|
auto it = m_vertex_map.find(vh);
|
|
if (it == m_vertex_map.end()) return vh;
|
|
if (it->second == Vertex_const_handle()) return Vertex_const_handle(); // newly created vertex
|
|
return it->second; // it will never reach here.
|
|
}
|
|
|
|
private:
|
|
/*! maps tracking the changes between the original arrangement and modified arrangement.
|
|
* The key is the current feature, and the value is the corresponding feature before modification.
|
|
* If there is no entry about a feature, the corresponding feature is itself.
|
|
* If the value is a invalid handle, it means that the feature is newly created and thus has no corresponding
|
|
* feature in the original arrangement.
|
|
*/
|
|
unordered_flat_map<Face_const_handle, Face_const_handle> m_face_map;
|
|
unordered_flat_map<Halfedge_const_handle, Halfedge_const_handle> m_halfedge_map;
|
|
unordered_flat_map<Vertex_const_handle, Vertex_const_handle> m_vertex_map;
|
|
};
|
|
|
|
void draw_unimplemented() {
|
|
std::cerr << "Geometry traits type of arrangement is required to support approximation of Point_2 and "
|
|
"X_monotone_curve_2. Traits on curved surfaces needs additional support for parameterization."
|
|
<< std::endl;
|
|
exit(1);
|
|
}
|
|
|
|
template <typename Arrangement, typename GSOptions>
|
|
void draw_impl_planar(
|
|
const Arrangement& arr, const GSOptions& gso, const char* title, Bbox_2 initial_bbox, QApplication& app) {
|
|
Arr_viewer viewer(app.activeWindow(), arr, gso, title, initial_bbox);
|
|
viewer.show();
|
|
app.exec();
|
|
}
|
|
|
|
template <typename Arrangement, typename GSOptions>
|
|
void draw_impl_agas(const Arrangement& arr, const GSOptions& gso,
|
|
const char* title, Bbox_2 initial_bbox, QApplication& app) {
|
|
using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle;
|
|
using Face_const_handle = typename Arrangement::Face_const_handle;
|
|
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
|
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
|
using Direction_3 = typename Geom_traits::Direction_3;
|
|
using Point_2 = typename Geom_traits::Point_2;
|
|
using Agas_template_args = tmpl_args<Geom_traits>;
|
|
|
|
Arrangement derived_arr(arr);
|
|
auto vertex_map = map_from_pair_ranges<Vertex_const_handle, Vertex_const_handle>(derived_arr.vertex_handles(),
|
|
arr.vertex_handles());
|
|
auto halfedge_map = map_from_pair_ranges<Halfedge_const_handle, Halfedge_const_handle>(derived_arr.halfedge_handles(),
|
|
arr.halfedge_handles());
|
|
auto face_map = map_from_pair_ranges<Face_const_handle, Face_const_handle>(derived_arr.face_handles(),
|
|
arr.face_handles());
|
|
// setup tracker and insert the identification curve.
|
|
Arr_insertion_tracker<Arrangement> tracker(derived_arr);
|
|
Point_2 src(Direction_3(0, 0, -1), Point_2::MIN_BOUNDARY_LOC);
|
|
Point_2 trg(Direction_3(0, 0, 1), Point_2::MAX_BOUNDARY_LOC);
|
|
auto ctr_xcv = arr.geometry_traits()->construct_x_monotone_curve_2_object();
|
|
auto id_curve = ctr_xcv(src, trg, Direction_3(Agas_template_args::atan_y, -Agas_template_args::atan_x, 0));
|
|
insert(derived_arr, id_curve);
|
|
|
|
// derived_gso proxies the call to the original gso
|
|
GSOptions derived_gso(gso);
|
|
derived_gso.draw_vertex = [&](const Arrangement&, const Vertex_const_handle& vh) {
|
|
Vertex_const_handle original_vh = tracker.original_vertex(vh);
|
|
if (original_vh == Vertex_const_handle() || vertex_map.find(original_vh) == vertex_map.end()) return false;
|
|
return gso.draw_vertex(arr, vertex_map.at(original_vh));
|
|
};
|
|
derived_gso.colored_vertex = [&](const Arrangement&, const Vertex_const_handle& vh) {
|
|
Vertex_const_handle original_vh = tracker.original_vertex(vh);
|
|
if (original_vh == Vertex_const_handle() || vertex_map.find(original_vh) == vertex_map.end()) return false;
|
|
return gso.colored_vertex(arr, vertex_map.at(original_vh));
|
|
};
|
|
derived_gso.vertex_color = [&](const Arrangement&, const Vertex_const_handle& vh) -> CGAL::IO::Color {
|
|
Vertex_const_handle original_vh = tracker.original_vertex(vh);
|
|
if (original_vh == Vertex_const_handle() || vertex_map.find(original_vh) == vertex_map.end())
|
|
return CGAL::IO::Color();
|
|
return gso.vertex_color(arr, vertex_map.at(original_vh));
|
|
};
|
|
derived_gso.draw_edge = [&](const Arrangement&, const Halfedge_const_handle& he) {
|
|
Halfedge_const_handle original_he = tracker.original_halfedge(he);
|
|
if (original_he == Halfedge_const_handle() || halfedge_map.find(original_he) == halfedge_map.end()) return false;
|
|
return gso.draw_edge(arr, halfedge_map.at(original_he));
|
|
};
|
|
derived_gso.colored_edge = [&](const Arrangement&, const Halfedge_const_handle& he) {
|
|
Halfedge_const_handle original_he = tracker.original_halfedge(he);
|
|
if (original_he == Halfedge_const_handle() || halfedge_map.find(original_he) == halfedge_map.end()) return false;
|
|
return gso.colored_edge(arr, halfedge_map.at(original_he));
|
|
};
|
|
derived_gso.edge_color = [&](const Arrangement&, const Halfedge_const_handle& he) -> CGAL::IO::Color {
|
|
Halfedge_const_handle original_he = tracker.original_halfedge(he);
|
|
if (original_he == Halfedge_const_handle() || halfedge_map.find(original_he) == halfedge_map.end())
|
|
return CGAL::IO::Color();
|
|
return gso.edge_color(arr, halfedge_map.at(original_he));
|
|
};
|
|
derived_gso.draw_face = [&](const Arrangement&, const Face_const_handle& fh) {
|
|
Face_const_handle original_fh = tracker.original_face(fh);
|
|
if (face_map.find(original_fh) == face_map.end()) return false;
|
|
return gso.draw_face(arr, face_map.at(original_fh));
|
|
};
|
|
derived_gso.colored_face = [&](const Arrangement&, const Face_const_handle& fh) {
|
|
Face_const_handle original_fh = tracker.original_face(fh);
|
|
if (face_map.find(original_fh) == face_map.end()) return false;
|
|
return gso.draw_face(arr, face_map.at(original_fh));
|
|
};
|
|
derived_gso.face_color = [&](const Arrangement&, const Face_const_handle& fh) -> CGAL::IO::Color {
|
|
Face_const_handle original_fh = tracker.original_face(fh);
|
|
if (face_map.find(original_fh) == face_map.end()) return CGAL::IO::Color();
|
|
return gso.face_color(arr, face_map.at(original_fh));
|
|
};
|
|
|
|
Arr_viewer viewer(app.activeWindow(), derived_arr, derived_gso, title, initial_bbox);
|
|
viewer.show();
|
|
app.exec();
|
|
}
|
|
|
|
template <typename Arrangement, typename GSOptions, typename... Args>
|
|
void draw(const Arrangement& arr, const GSOptions& gso, Args&&... args) {
|
|
using Geom_traits = typename Arrangement::Geometry_traits_2;
|
|
|
|
if constexpr(!has_approximate_traits_v<Geom_traits>)
|
|
return draw_unimplemented();
|
|
else if constexpr(is_or_derived_from_agas_v<Geom_traits>)
|
|
// Arrangements on curved surfaces require special handling. The identification curve must be present to make the
|
|
// curved surface homeomorphic to a bounded plane.
|
|
return draw_impl_agas(arr, gso, std::forward<Args>(args)...);
|
|
else
|
|
return draw_impl_planar(arr, gso, std::forward<Args>(args)...);
|
|
}
|
|
|
|
} // namespace draw_aos
|
|
|
|
/*! \brief draws an arrangement on surface.
|
|
*
|
|
* \tparam Arrangement
|
|
* \tparam GSOptions
|
|
* \param arr the arrangement to be drawn
|
|
* \param gso graphics scene options
|
|
* \param title title of the viewer window
|
|
* \param initial_bbox parameter space bounding box to be shown intially. If empty, the approximate bounding box of the
|
|
* arrangement is used. For arrangements induced by unbounded curves, the default initial bounding box is computed from
|
|
* vertex coordinates.
|
|
*/
|
|
template <typename Arrangement, typename GSOptions>
|
|
void draw(const Arrangement& arr,
|
|
const GSOptions& gso,
|
|
const char* title = "2D Arrangement on Surface Viewer",
|
|
Bbox_2 initial_bbox = Bbox_2(0, 0, 0, 0)) {
|
|
#if defined(CGAL_TEST_SUITE)
|
|
bool cgal_test_suite = true;
|
|
#else
|
|
bool cgal_test_suite = qEnvironmentVariableIsSet("CGAL_TEST_SUITE");
|
|
#endif
|
|
|
|
if (cgal_test_suite) return;
|
|
|
|
Qt::init_ogl_context(4, 3);
|
|
int argc;
|
|
QApplication app(argc, nullptr);
|
|
draw_aos::draw(arr, gso, title, initial_bbox, app);
|
|
}
|
|
|
|
/*! \brief draws an arrangement on surface with default graphics scene options. Faces are colored randomly.
|
|
*
|
|
* \tparam Arrangement
|
|
* \param arr the arrangement to be drawn
|
|
* \param title title of the viewer window
|
|
* \param initial_bbox parameter space bounding box to be shown intially. If empty, the approximate bounding box of the
|
|
* arrangement is used. For arrangements induced by unbounded curves, the default initial bounding box is computed from
|
|
* vertex coordinates.
|
|
*/
|
|
template <typename Arrangement>
|
|
void draw(const Arrangement& arr,
|
|
const char* title = "2D Arrangement on Surface Viewer",
|
|
Bbox_2 initial_bbox = Bbox_2(0, 0, 0, 0)) {
|
|
using Face_const_handle = typename Arrangement::Face_const_handle;
|
|
using Vertex_const_handle = typename Arrangement::Vertex_const_handle;
|
|
using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle;
|
|
using GSOptions =
|
|
CGAL::Graphics_scene_options<Arrangement, Vertex_const_handle, Halfedge_const_handle, Face_const_handle>;
|
|
|
|
GSOptions gso;
|
|
gso.enable_vertices();
|
|
gso.draw_vertex = [](const Arrangement&, const Vertex_const_handle&) { return true; };
|
|
gso.colored_vertex = [](const Arrangement&, const Vertex_const_handle&) { return true; };
|
|
gso.vertex_color = [](const Arrangement&, const Vertex_const_handle& /* vh */) -> CGAL::IO::Color
|
|
{ return CGAL::IO::Color(255, 0, 0); };
|
|
|
|
gso.enable_edges();
|
|
gso.draw_edge = [](const Arrangement&, const Halfedge_const_handle&) { return true; };
|
|
gso.colored_edge = [](const Arrangement&, const Halfedge_const_handle&) { return true; };
|
|
gso.edge_color = [](const Arrangement&, const Halfedge_const_handle& /* heh */) -> CGAL::IO::Color
|
|
{ return CGAL::IO::Color(0, 0, 0); };
|
|
|
|
gso.enable_faces();
|
|
gso.draw_face = [](const Arrangement&, const Face_const_handle&) { return true; };
|
|
gso.colored_face = [](const Arrangement&, const Face_const_handle&) { return true; };
|
|
gso.face_color = [](const Arrangement&, const Face_const_handle& fh) -> CGAL::IO::Color {
|
|
CGAL::Random random(std::size_t(fh.ptr()));
|
|
return get_random_color(random);
|
|
};
|
|
|
|
draw(arr, gso, title, initial_bbox);
|
|
}
|
|
|
|
#define CGAL_ARR_TYPE CGAL::Arrangement_on_surface_2<GeometryTraits_2, TopologyTraits>
|
|
|
|
///
|
|
template <typename GeometryTraits_2, typename TopologyTraits, class GSOptions>
|
|
void add_to_graphics_scene(const CGAL_ARR_TYPE& aos, CGAL::Graphics_scene& graphics_scene, const GSOptions& gso) {
|
|
draw_aos::Draw_arr_tool dar(aos, graphics_scene, gso);
|
|
dar.add_elements();
|
|
}
|
|
|
|
///
|
|
template <typename GeometryTraits_2, typename TopologyTraits>
|
|
void add_to_graphics_scene(const CGAL_ARR_TYPE& aos, CGAL::Graphics_scene& graphics_scene) {
|
|
CGAL::Graphics_scene_options<CGAL_ARR_TYPE, typename CGAL_ARR_TYPE::Vertex_const_handle,
|
|
typename CGAL_ARR_TYPE::Halfedge_const_handle,
|
|
typename CGAL_ARR_TYPE::Face_const_handle> gso;
|
|
// colored face?
|
|
gso.colored_face = [](const CGAL_ARR_TYPE&, typename CGAL_ARR_TYPE::Face_const_handle) -> bool { return true; };
|
|
|
|
// face color
|
|
gso.face_color = [](const CGAL_ARR_TYPE&, typename CGAL_ARR_TYPE::Face_const_handle fh) -> CGAL::IO::Color {
|
|
CGAL::Random random((unsigned int)(std::size_t)(&*fh));
|
|
return get_random_color(random);
|
|
};
|
|
|
|
add_to_graphics_scene(aos, graphics_scene, gso);
|
|
}
|
|
|
|
//! draws an arrangement on surface.
|
|
template <typename GeometryTraits_2, typename TopologyTraits, class GSOptions>
|
|
void draw_old(const CGAL_ARR_TYPE& aos,
|
|
const GSOptions& gso,
|
|
const char* title = "2D Arrangement on Surface Basic Viewer") {
|
|
CGAL::Graphics_scene graphics_scene;
|
|
add_to_graphics_scene(aos, graphics_scene, gso);
|
|
draw_graphics_scene(graphics_scene, title);
|
|
}
|
|
|
|
//! draws an arrangement on surface.
|
|
template <typename GeometryTraits_2, typename TopologyTraits>
|
|
void draw_old(const CGAL_ARR_TYPE& aos, const char* title = "2D Arrangement on Surface Basic Viewer") {
|
|
CGAL::Graphics_scene graphics_scene;
|
|
add_to_graphics_scene(aos, graphics_scene);
|
|
draw_graphics_scene(graphics_scene, title);
|
|
}
|
|
|
|
} // namespace CGAL
|
|
|
|
#endif
|