cgal/Cartesian_kernel/include/CGAL/constructions/kernel_ftC3.h

409 lines
12 KiB
C++

// Copyright (c) 2000
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Herve Bronnimann
#ifndef CGAL_CONSTRUCTIONS_KERNEL_FTC3_H
#define CGAL_CONSTRUCTIONS_KERNEL_FTC3_H
#include <CGAL/determinant.h>
#include <CGAL/number_utils.h>
namespace CGAL {
template < class FT >
CGAL_KERNEL_INLINE
void
midpointC3( const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz,
FT &x, FT &y, FT &z)
{
x = (px + qx) / 2;
y = (py + qy) / 2;
z = (pz + qz) / 2;
}
template < class FT >
void
barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1,
const FT &p2x, const FT &p2y, const FT &p2z,
FT &x, FT &y, FT &z)
{
FT w2 = 1 - w1;
x = w1 * p1x + w2 * p2x;
y = w1 * p1y + w2 * p2y;
z = w1 * p1z + w2 * p2z;
}
template < class FT >
void
barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1,
const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2,
FT &x, FT &y, FT &z)
{
FT sum = w1 + w2;
CGAL_kernel_assertion(sum != 0);
x = (w1 * p1x + w2 * p2x) / sum;
y = (w1 * p1y + w2 * p2y) / sum;
z = (w1 * p1z + w2 * p2z) / sum;
}
template < class FT >
void
barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1,
const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2,
const FT &p3x, const FT &p3y, const FT &p3z,
FT &x, FT &y, FT &z)
{
FT w3 = 1 - w1 - w2;
x = w1 * p1x + w2 * p2x + w3 * p3x;
y = w1 * p1y + w2 * p2y + w3 * p3y;
z = w1 * p1z + w2 * p2z + w3 * p3z;
}
template < class FT >
void
barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1,
const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2,
const FT &p3x, const FT &p3y, const FT &p3z, const FT &w3,
FT &x, FT &y, FT &z)
{
FT sum = w1 + w2 + w3;
CGAL_kernel_assertion(sum != 0);
x = (w1 * p1x + w2 * p2x + w3 * p3x) / sum;
y = (w1 * p1y + w2 * p2y + w3 * p3y) / sum;
z = (w1 * p1z + w2 * p2z + w3 * p3z) / sum;
}
template < class FT >
void
barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1,
const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2,
const FT &p3x, const FT &p3y, const FT &p3z, const FT &w3,
const FT &p4x, const FT &p4y, const FT &p4z,
FT &x, FT &y, FT &z)
{
FT w4 = 1 - w1 - w2 - w3;
x = w1 * p1x + w2 * p2x + w3 * p3x + w4 * p4x;
y = w1 * p1y + w2 * p2y + w3 * p3y + w4 * p4y;
z = w1 * p1z + w2 * p2z + w3 * p3z + w4 * p4z;
}
template < class FT >
void
barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1,
const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2,
const FT &p3x, const FT &p3y, const FT &p3z, const FT &w3,
const FT &p4x, const FT &p4y, const FT &p4z, const FT &w4,
FT &x, FT &y, FT &z)
{
FT sum = w1 + w2 + w3 + w4;
CGAL_kernel_assertion(sum != 0);
x = (w1 * p1x + w2 * p2x + w3 * p3x + w4 * p4x) / sum;
y = (w1 * p1y + w2 * p2y + w3 * p3y + w4 * p4y) / sum;
z = (w1 * p1z + w2 * p2z + w3 * p3z + w4 * p4z) / sum;
}
template < class FT >
void
centroidC3( const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz,
const FT &rx, const FT &ry, const FT &rz,
const FT &sx, const FT &sy, const FT &sz,
FT &x, FT &y, FT &z)
{
x = (px + qx + rx + sx) / 4;
y = (py + qy + ry + sy) / 4;
z = (pz + qz + rz + sz) / 4;
}
template < class FT >
void
centroidC3( const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz,
const FT &rx, const FT &ry, const FT &rz,
FT &x, FT &y, FT &z)
{
x = (px + qx + rx) / 3;
y = (py + qy + ry) / 3;
z = (pz + qz + rz) / 3;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
FT
squared_radiusC3(const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz,
const FT &rx, const FT &ry, const FT &rz,
const FT &sx, const FT &sy, const FT &sz)
{
// Translate p to origin to simplify the expression.
FT qpx = qx-px;
FT qpy = qy-py;
FT qpz = qz-pz;
FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz);
FT rpx = rx-px;
FT rpy = ry-py;
FT rpz = rz-pz;
FT rp2 = CGAL_NTS square(rpx) + CGAL_NTS square(rpy) + CGAL_NTS square(rpz);
FT spx = sx-px;
FT spy = sy-py;
FT spz = sz-pz;
FT sp2 = CGAL_NTS square(spx) + CGAL_NTS square(spy) + CGAL_NTS square(spz);
FT num_x = determinant(qpy,qpz,qp2,
rpy,rpz,rp2,
spy,spz,sp2);
FT num_y = determinant(qpx,qpz,qp2,
rpx,rpz,rp2,
spx,spz,sp2);
FT num_z = determinant(qpx,qpy,qp2,
rpx,rpy,rp2,
spx,spy,sp2);
FT den = determinant(qpx,qpy,qpz,
rpx,rpy,rpz,
spx,spy,spz);
CGAL_kernel_assertion( ! CGAL_NTS is_zero(den) );
return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y)
+ CGAL_NTS square(num_z)) / CGAL_NTS square(2 * den);
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
FT
squared_radiusC3(const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz,
const FT &sx, const FT &sy, const FT &sz)
{
// Translate s to origin to simplify the expression.
FT psx = px-sx;
FT psy = py-sy;
FT psz = pz-sz;
FT ps2 = CGAL_NTS square(psx) + CGAL_NTS square(psy) + CGAL_NTS square(psz);
FT qsx = qx-sx;
FT qsy = qy-sy;
FT qsz = qz-sz;
FT qs2 = CGAL_NTS square(qsx) + CGAL_NTS square(qsy) + CGAL_NTS square(qsz);
FT rsx = psy*qsz-psz*qsy;
FT rsy = psz*qsx-psx*qsz;
FT rsz = psx*qsy-psy*qsx;
FT num_x = ps2 * determinant(qsy,qsz,rsy,rsz)
- qs2 * determinant(psy,psz,rsy,rsz);
FT num_y = ps2 * determinant(qsx,qsz,rsx,rsz)
- qs2 * determinant(psx,psz,rsx,rsz);
FT num_z = ps2 * determinant(qsx,qsy,rsx,rsy)
- qs2 * determinant(psx,psy,rsx,rsy);
FT den = determinant(psx,psy,psz,
qsx,qsy,qsz,
rsx,rsy,rsz);
CGAL_kernel_assertion( den != 0 );
return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y)
+ CGAL_NTS square(num_z)) / CGAL_NTS square(2 * den);
}
template <class FT>
CGAL_KERNEL_MEDIUM_INLINE
void
plane_from_pointsC3(const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz,
const FT &rx, const FT &ry, const FT &rz,
FT &pa, FT &pb, FT &pc, FT &pd)
{
FT rpx = px-rx;
FT rpy = py-ry;
FT rpz = pz-rz;
FT rqx = qx-rx;
FT rqy = qy-ry;
FT rqz = qz-rz;
// Cross product rp * rq
pa = rpy*rqz - rqy*rpz;
pb = rpz*rqx - rqz*rpx;
pc = rpx*rqy - rqx*rpy;
pd = - pa*rx - pb*ry - pc*rz;
}
template <class FT>
CGAL_KERNEL_MEDIUM_INLINE
void
plane_from_point_directionC3(const FT &px, const FT &py, const FT &pz,
const FT &dx, const FT &dy, const FT &dz,
FT &pa, FT &pb, FT &pc, FT &pd)
{
// d is the normal direction
pa = dx; pb = dy; pc = dz; pd = -dx*px - dy*py - dz*pz;
}
template <class FT>
CGAL_KERNEL_MEDIUM_INLINE
void
point_on_planeC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd,
FT &x, FT &y, FT &z)
{
x = y = z = 0;
if (! CGAL_NTS is_zero(pa)) x = -pd/pa;
else if (! CGAL_NTS is_zero(pb)) y = -pd/pb;
else z = -pd/pc;
}
template <class FT>
CGAL_KERNEL_MEDIUM_INLINE
void
projection_planeC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd,
const FT &px, const FT &py, const FT &pz,
FT &x, FT &y, FT &z)
{
// the equation of the plane is Ax+By+Cz+D=0
// the normal direction is (A,B,C)
// the projected point is p-lambda(A,B,C) where
// A(x-lambda A) + B(y-lambda B) + C(z-lambda C) + D = 0
FT num = pa*px + pb*py + pc*pz + pd;
FT den = pa*pa + pb*pb + pc*pc;
FT lambda = num / den;
x = px - lambda * pa;
y = py - lambda * pb;
z = pz - lambda * pc;
}
template < class FT >
CGAL_KERNEL_INLINE
FT
squared_distanceC3( const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz)
{
return CGAL_NTS square(px-qx) + CGAL_NTS square(py-qy) +
CGAL_NTS square(pz-qz);
}
template < class FT >
CGAL_KERNEL_INLINE
FT
squared_radiusC3( const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz)
{
return squared_distanceC3(px, py, pz, qx, qy, qz) / 4;
}
template < class FT >
CGAL_KERNEL_INLINE
FT
scaled_distance_to_directionC3(const FT &pa, const FT &pb, const FT &pc,
const FT &px, const FT &py, const FT &pz)
{
return pa*px + pb*py + pc*pz;
}
template < class FT >
CGAL_KERNEL_INLINE
FT
scaled_distance_to_planeC3(
const FT &pa, const FT &pb, const FT &pc, const FT &pd,
const FT &px, const FT &py, const FT &pz)
{
return pa*px + pb*py + pc*pz + pd;
}
template < class FT >
CGAL_KERNEL_INLINE
FT
scaled_distance_to_planeC3(
const FT &ppx, const FT &ppy, const FT &ppz,
const FT &pqx, const FT &pqy, const FT &pqz,
const FT &prx, const FT &pry, const FT &prz,
const FT &px, const FT &py, const FT &pz)
{
return determinant(ppx-px,ppy-py,ppz-pz,
pqx-px,pqy-py,pqz-pz,
prx-px,pry-py,prz-pz);
}
template < class FT >
CGAL_KERNEL_INLINE
void
bisector_of_pointsC3(const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz,
FT &a, FT &b, FT &c, FT &d)
{
a = 2*(px - qx);
b = 2*(py - qy);
c = 2*(pz - qz);
d = CGAL_NTS square(qx) + CGAL_NTS square(qy) + CGAL_NTS square(qz)
- CGAL_NTS square(px) - CGAL_NTS square(py) - CGAL_NTS square(pz);
}
template < class FT >
void
bisector_of_planesC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd,
const FT &qa, const FT &qb, const FT &qc, const FT &qd,
FT &a, FT &b, FT &c, FT &d)
{
// We normalize the equations of the 2 planes, and we then add them.
FT n1 = CGAL_NTS sqrt(CGAL_NTS square(pa) + CGAL_NTS square(pb) +
CGAL_NTS square(pc));
FT n2 = CGAL_NTS sqrt(CGAL_NTS square(qa) + CGAL_NTS square(qb) +
CGAL_NTS square(qc));
a = n2 * pa + n1 * qa;
b = n2 * pb + n1 * qb;
c = n2 * pc + n1 * qc;
d = n2 * pd + n1 * qd;
// Care must be taken for the case when this produces a degenerate line.
if (a == 0 && b == 0 && c == 0) {
a = n2 * pa - n1 * qa;
b = n2 * pb - n1 * qb;
c = n2 * pc - n1 * qc;
d = n2 * pd - n1 * qd;
}
}
template < class FT >
FT
squared_areaC3(const FT &px, const FT &py, const FT &pz,
const FT &qx, const FT &qy, const FT &qz,
const FT &rx, const FT &ry, const FT &rz)
{
// Compute vectors pq and pr, then the cross product,
// then 1/4 of its squared length.
FT dqx = qx-px;
FT dqy = qy-py;
FT dqz = qz-pz;
FT drx = rx-px;
FT dry = ry-py;
FT drz = rz-pz;
FT vx = dqy*drz-dqz*dry;
FT vy = dqz*drx-dqx*drz;
FT vz = dqx*dry-dqy*drx;
return (CGAL_NTS square(vx) + CGAL_NTS square(vy) + CGAL_NTS square(vz))/4;
}
} //namespace CGAL
#endif // CGAL_CONSTRUCTIONS_KERNEL_FTC3_H