cgal/Solver_interface/include/CGAL/Eigen_svd.h

72 lines
1.8 KiB
C++

// Copyright (c) 2012 INRIA Bordeaux Sud-Ouest (France), All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Gael Guennebaud
#ifndef CGAL_EIGEN_SVD_H
#define CGAL_EIGEN_SVD_H
#include <boost/config.hpp>
#if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable:4244)
#endif
#include <CGAL/Eigen_matrix.h>
#include <CGAL/Eigen_vector.h>
#include <Eigen/SVD>
namespace CGAL {
/*!
\ingroup PkgSolverInterfaceLS
The class `Eigen_svd` provides an algorithm to solve in the least
square sense a linear system with a singular value decomposition using
\ref thirdpartyEigen.
\cgalModels `SvdTraits`
*/
class Eigen_svd
{
public:
/// \name Types
/// @{
typedef double FT;
typedef Eigen_vector<FT> Vector;
typedef Eigen_matrix<FT> Matrix;
/// @}
/// Solves the system \f$ MX=B\f$ (in the least square sense if \f$ M\f$ is not
/// square) using a singular value decomposition.The solution is stored in \f$ B\f$.
/// \return the condition number of \f$ M\f$
static FT solve(const Matrix& M, Vector& B)
{
#if EIGEN_VERSION_AT_LEAST(3,4,90)
Eigen::JacobiSVD<Matrix::EigenType, Eigen::ComputeThinU | Eigen::ComputeThinV> jacobiSvd(M.eigen_object());
#else
Eigen::JacobiSVD<Matrix::EigenType> jacobiSvd(M.eigen_object(), ::Eigen::ComputeThinU | ::Eigen::ComputeThinV);
#endif
B.eigen_object()=jacobiSvd.solve(Vector::EigenType(B.eigen_object()));
return jacobiSvd.singularValues().array().abs().maxCoeff() /
jacobiSvd.singularValues().array().abs().minCoeff();
}
};
} // namespace CGAL
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
#endif // CGAL_EIGEN_SVD_H