cgal/Solver_interface/include/CGAL/Eigen_diagonalize_traits.h

150 lines
3.9 KiB
C++

// Copyright (c) 2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Jocelyn Meyron and Quentin Mérigot
//
#ifndef CGAL_EIGEN_DIAGONALIZE_TRAITS_H
#define CGAL_EIGEN_DIAGONALIZE_TRAITS_H
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
#include <CGAL/array.h>
namespace CGAL {
/// A model of the concept `DiagonalizeTraits` using \ref thirdpartyEigen.
/// \cgalModels `DiagonalizeTraits`
template <typename FT, unsigned int dim = 3>
class Eigen_diagonalize_traits{
typedef Eigen::Matrix<FT, dim, dim> Matrix;
typedef Eigen::Matrix<FT, dim, 1> Vector;
// Construct the covariance matrix
static Matrix
construct_covariance_matrix
(const cpp11::array<FT, (dim * (dim+1) / 2)>& cov) {
Matrix m;
for (std::size_t i = 0; i < dim; ++ i)
for (std::size_t j = i; j < dim; ++ j)
{
m(i,j) = static_cast<float>(cov[(dim * i) + j - ((i * (i+1)) / 2)]);
if (i != j)
m(j,i) = m(i,j);
}
return m;
}
// Diagonalize a selfadjoint matrix
static bool
diagonalize_selfadjoint_matrix (Matrix& m,
Matrix& eigenvectors,
Vector& eigenvalues) {
Eigen::SelfAdjointEigenSolver<Matrix> eigensolver(m);
if (eigensolver.info() != Eigen::Success) {
return false;
}
eigenvalues = eigensolver.eigenvalues();
eigenvectors = eigensolver.eigenvectors();
return true;
}
public:
static bool
diagonalize_selfadjoint_covariance_matrix(
const cpp11::array<FT, (dim * (dim+1) / 2)>& cov,
cpp11::array<FT, dim>& eigenvalues)
{
Matrix m = construct_covariance_matrix(cov);
// Diagonalizing the matrix
Vector eigenvalues_;
Matrix eigenvectors_;
bool res = diagonalize_selfadjoint_matrix(m, eigenvectors_, eigenvalues_);
if (res)
{
for (std::size_t i = 0; i < dim; ++ i)
eigenvalues[i] = static_cast<FT>(eigenvalues_[i]);
}
return res;
}
static bool
diagonalize_selfadjoint_covariance_matrix(
const cpp11::array<FT, (dim * (dim+1) / 2)>& cov,
cpp11::array<FT, dim>& eigenvalues,
cpp11::array<FT, dim * dim>& eigenvectors)
{
Matrix m = construct_covariance_matrix(cov);
// Diagonalizing the matrix
Vector eigenvalues_;
Matrix eigenvectors_;
bool res = diagonalize_selfadjoint_matrix(m, eigenvectors_, eigenvalues_);
if (res)
{
for (std::size_t i = 0; i < dim; ++ i)
{
eigenvalues[i] = static_cast<FT>(eigenvalues_[i]);
for (std::size_t j = 0; j < dim; ++ j)
eigenvectors[dim*i + j]=static_cast<FT>(eigenvectors_(j,i));
}
}
return res;
}
// Extract the eigenvector associated to the largest eigenvalue
static bool
extract_largest_eigenvector_of_covariance_matrix (
const cpp11::array<FT, (dim * (dim+1) / 2)>& cov,
cpp11::array<FT,dim> &normal)
{
// Construct covariance matrix
Matrix m = construct_covariance_matrix(cov);
// Diagonalizing the matrix
Vector eigenvalues;
Matrix eigenvectors;
if (! diagonalize_selfadjoint_matrix(m, eigenvectors, eigenvalues)) {
return false;
}
// Eigenvalues are sorted by increasing order
for (unsigned int i = 0; i < dim; ++ i)
normal[i] = static_cast<FT> (eigenvectors(i,dim-1));
return true;
}
};
} // namespace CGAL
#endif // CGAL_EIGEN_DIAGONALIZE_TRAITS_H