mirror of https://github.com/CGAL/cgal
720 lines
20 KiB
C++
720 lines
20 KiB
C++
// Copyright (c) 2003-2006 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Steve Oudot,
|
|
// David Rey,
|
|
// Mariette Yvinec,
|
|
// Laurent Rineau,
|
|
// Andreas Fabri
|
|
|
|
|
|
|
|
#ifndef CGAL_SURFACE_MESHER_SURFACE_MESHER_H
|
|
#define CGAL_SURFACE_MESHER_SURFACE_MESHER_H
|
|
|
|
#include <CGAL/Mesher_level.h>
|
|
#include <CGAL/Mesh_2/Triangulation_mesher_level_traits_3.h>
|
|
#include <CGAL/Double_map.h>
|
|
#include <list>
|
|
#include <string>
|
|
#include <sstream>
|
|
|
|
namespace CGAL {
|
|
|
|
namespace Surface_mesher {
|
|
|
|
// NB: by convention, the priority queue is sorted with respect to the
|
|
// first element of the list of criteria
|
|
|
|
template <
|
|
class C2T3,
|
|
class Surface_,
|
|
class SurfaceMeshTraits,
|
|
class Criteria_
|
|
>
|
|
class Surface_mesher_base
|
|
: public Triangulation_mesher_level_traits_3<typename C2T3::Triangulation>
|
|
{
|
|
public:
|
|
typedef C2T3 Complex_2_in_triangulation_3;
|
|
typedef Surface_ Surface;
|
|
typedef SurfaceMeshTraits Surface_mesh_traits;
|
|
typedef Criteria_ Criteria;
|
|
|
|
typedef typename C2T3::Triangulation Tr;
|
|
typedef typename Tr::Point Point;
|
|
typedef typename Tr::Edge Edge;
|
|
typedef typename Tr::Vertex_handle Vertex_handle;
|
|
typedef typename Tr::Cell_handle Cell_handle;
|
|
|
|
typedef typename Tr::Geom_traits GT;
|
|
|
|
typedef Triangulation_mesher_level_traits_3<Tr> Triangulation_traits;
|
|
typedef typename Triangulation_traits::Zone Zone;
|
|
|
|
typedef typename Tr::Finite_facets_iterator Finite_facets_iterator;
|
|
typedef typename Tr::Facet Facet;
|
|
|
|
typedef typename Criteria::Quality Quality;
|
|
|
|
typedef Double_map<Facet, Quality> Bad_facets;
|
|
|
|
// Constructor
|
|
Surface_mesher_base (C2T3& co,
|
|
const Surface& s,
|
|
const Surface_mesh_traits& mesh_traits,
|
|
const Criteria& c) :
|
|
Triangulation_mesher_level_traits_3<Tr>(co.triangulation()),
|
|
c2t3(co),
|
|
tr(co.triangulation()),
|
|
surf(s),
|
|
meshtraits(mesh_traits),
|
|
criteria(c)
|
|
{
|
|
#ifdef CGAL_SURFACE_MESHER_DEBUG_CONSTRUCTORS
|
|
std::cerr << "CONS: Surface_mesher_base\n";
|
|
#endif
|
|
}
|
|
|
|
protected:
|
|
C2T3& c2t3;
|
|
Tr& tr; // Associated triangulation reference
|
|
const Surface& surf; // Surface
|
|
const Surface_mesh_traits& meshtraits; // Surface mesh traits
|
|
const Criteria& criteria; // Meshing criteria
|
|
Bad_facets facets_to_refine; // Set of facets to refine
|
|
|
|
public:
|
|
|
|
// Helper functions
|
|
Facet mirror_facet(const Facet& f) const
|
|
{
|
|
return tr.mirror_facet(f);
|
|
}
|
|
|
|
static void set_facet_visited(Facet f)
|
|
{
|
|
f.first->set_facet_visited(f.second);
|
|
}
|
|
|
|
static void set_facet_surface_center(Facet f, const Point& p)
|
|
{
|
|
f.first->set_facet_surface_center(f.second, p);
|
|
}
|
|
|
|
static const Point& get_facet_surface_center(const Facet& f)
|
|
{
|
|
return f.first->get_facet_surface_center(f.second);
|
|
}
|
|
|
|
static void reset_visited(Facet f)
|
|
{
|
|
f.first->reset_visited(f.second);
|
|
}
|
|
|
|
static bool is_facet_visited(const Facet& f)
|
|
{
|
|
return f.first->is_facet_visited(f.second);
|
|
}
|
|
|
|
// Remains unchanged
|
|
Tr& triangulation_ref_impl()
|
|
{
|
|
return tr;
|
|
}
|
|
|
|
// Remains unchanged
|
|
const Tr& triangulation_ref_impl() const
|
|
{
|
|
return tr;
|
|
}
|
|
|
|
// Initialization function
|
|
void scan_triangulation_impl() {
|
|
Point center;
|
|
// We test only the finite Delaunay facets
|
|
|
|
#ifdef CGAL_SURFACE_MESHER_VERBOSE
|
|
std::cout << "scanning facets..." << std::endl;
|
|
#endif
|
|
for (Finite_facets_iterator fit = tr.finite_facets_begin(); fit !=
|
|
tr.finite_facets_end(); ++fit) {
|
|
if (tr.dimension() == 3) {
|
|
new_facet<true>(*fit);
|
|
// see definition of
|
|
// template <bool> new_facet()
|
|
}
|
|
else {
|
|
CGAL_assertion (tr.dimension() == 2);
|
|
if (is_facet_on_surface(*fit, center)) {
|
|
//Cell_handle c;
|
|
c2t3.set_in_complex(*fit);
|
|
set_facet_surface_center((*fit),center);
|
|
//c=(*fit).first;
|
|
//c->set_facet_on_surface((*fit).second,true);
|
|
//c->set_facet_surface_center((*fit).second,center);
|
|
|
|
Quality a_r;
|
|
if (criteria.is_bad (*fit, a_r)) {
|
|
facets_to_refine.insert(*fit,a_r);
|
|
}
|
|
}
|
|
else
|
|
c2t3.remove_from_complex(*fit);
|
|
// (*fit).first->set_facet_on_surface((*fit).second,false);
|
|
}
|
|
}
|
|
} // scan_triangulation_impl end
|
|
|
|
// Tells whether there remain elements to refine
|
|
bool no_longer_element_to_refine_impl() const {
|
|
return facets_to_refine.empty();
|
|
}
|
|
|
|
// Returns the next element to refine
|
|
Facet get_next_element_impl() {
|
|
return facets_to_refine.front()->second;
|
|
}
|
|
|
|
// deletes the next element from the set of elements to refine
|
|
// NB: it is useless here, since the update of the restricted
|
|
// Delaunay triangulation automatically deletes the next element
|
|
void pop_next_element_impl() {}
|
|
|
|
// From the element to refine, gets the point to insert
|
|
Point refinement_point_impl(const Facet& f) const
|
|
{
|
|
#ifdef CGAL_MESHES_DEBUG_REFINEMENT_POINTS
|
|
std::cerr << "point from Surface_mesher: ";
|
|
#endif
|
|
CGAL_assertion (c2t3.face_status(f) == C2T3::REGULAR);
|
|
//CGAL_assertion (f.first->is_facet_on_surface (f.second));
|
|
return get_facet_surface_center (f);
|
|
//return f.first->get_facet_surface_center (f.second);
|
|
}
|
|
|
|
// Useless here
|
|
void before_conflicts_impl(const Facet&, const Point&
|
|
#ifdef CGAL_SURFACE_MESHER_DEBUG_BEFORE_CONFLICTS
|
|
s)
|
|
{
|
|
std::cerr << "Refine_facets: before conflicts of " << s << " ";
|
|
#else
|
|
)
|
|
{
|
|
#endif
|
|
}
|
|
|
|
// Useless here
|
|
Mesher_level_conflict_status private_test_point_conflict_impl(const Point&,
|
|
Zone&)
|
|
{
|
|
return NO_CONFLICT;
|
|
}
|
|
|
|
// Useless here
|
|
void after_no_insertion_impl(const Facet&, const Point&, const Zone&)
|
|
{
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Tests if the point p encroaches one facet of the restricted Delaunay
|
|
// triangulation.
|
|
|
|
Mesher_level_conflict_status
|
|
test_point_conflict_from_superior_impl(const Point& p,
|
|
Zone& zone)
|
|
{
|
|
for (typename Zone::Facets_iterator fit =
|
|
zone.internal_facets.begin();
|
|
fit != zone.internal_facets.end();
|
|
++fit)
|
|
if( test_if_facet_is_encroached(*fit, p) )
|
|
return CONFLICT_BUT_ELEMENT_CAN_BE_RECONSIDERED;
|
|
|
|
for (typename Zone::Facets_iterator fit =
|
|
zone.boundary_facets.begin();
|
|
fit != zone.boundary_facets.end();
|
|
++fit)
|
|
if( test_if_facet_is_encroached(*fit, p) )
|
|
return CONFLICT_BUT_ELEMENT_CAN_BE_RECONSIDERED;
|
|
|
|
return NO_CONFLICT;
|
|
}
|
|
|
|
bool test_if_facet_is_encroached(const Facet f, const Point& p)
|
|
{
|
|
if( tr.is_infinite(f.first) )
|
|
return false;
|
|
|
|
if (c2t3.face_status(f) == C2T3::REGULAR)
|
|
{
|
|
const Cell_handle& c = f.first;
|
|
const int& index = f.second;
|
|
|
|
typename GT::Compute_squared_distance_3 distance =
|
|
tr.geom_traits().compute_squared_distance_3_object();
|
|
|
|
// test Delaunay surfacique
|
|
Point center = get_facet_surface_center(f);
|
|
|
|
for(bool exit = false; ; exit = true)
|
|
{
|
|
// this for loop is a trick to pass in the following "if" once
|
|
// with center="surface center", and once with
|
|
// center="circumcenter"
|
|
|
|
if( distance(center, p) <
|
|
distance(center, c->vertex((index+1)&3)->point()) )
|
|
{
|
|
Quality q;
|
|
criteria.is_bad(f, q); // to get q (passed as reference)
|
|
Facet other_side = mirror_facet(f);
|
|
if(f.first < other_side.first)
|
|
facets_to_refine.insert(f, q);
|
|
else
|
|
facets_to_refine.insert(other_side, q);
|
|
return true;
|
|
}
|
|
|
|
if(exit)
|
|
return false;
|
|
|
|
// test Gabriel
|
|
center = tr.geom_traits().construct_circumcenter_3_object()
|
|
(c->vertex((index+1)&3)->point(),
|
|
c->vertex((index+2)&3)->point(),
|
|
c->vertex((index+3)&3)->point());
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* returns the conflicts zone */
|
|
Zone conflicts_zone_impl(const Point& p, Facet f) const {
|
|
Zone zone;
|
|
|
|
// TODO may be avoid the locate here
|
|
zone.cell =
|
|
tr.locate(p, zone.locate_type, zone.i, zone.j, f.first);
|
|
|
|
tr.find_conflicts(p, zone.cell,
|
|
std::back_inserter(zone.boundary_facets),
|
|
std::back_inserter(zone.cells),
|
|
std::back_inserter(zone.internal_facets));
|
|
return zone;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Deletes old facets from the restricted Delaunay triangulation
|
|
|
|
void before_insertion_impl(const Facet&, const Point& s, Zone& zone) {
|
|
|
|
// DEBUG: on ajoute un espace
|
|
//std::cout << " ";
|
|
|
|
CGAL_assertion_code(Vertex_handle v);
|
|
CGAL_assertion (!tr.is_vertex(s,v));
|
|
|
|
if (tr.dimension() == 3) {
|
|
// On s'occupe des facettes de la zone de conflit
|
|
for (typename Zone::Facets_iterator fit =
|
|
zone.internal_facets.begin();
|
|
fit != zone.internal_facets.end();
|
|
++fit)
|
|
handle_facet_inside_conflict_zone (*fit);
|
|
|
|
for (typename Zone::Facets_iterator fit =
|
|
zone.boundary_facets.begin(); fit !=
|
|
zone.boundary_facets.end(); ++fit)
|
|
handle_facet_on_boundary_of_conflict_zone (*fit);
|
|
}
|
|
|
|
// If dim < 3, then the triangulation has only one facet and the
|
|
// complex has no facet, generically
|
|
else {
|
|
CGAL_assertion (tr.dimension() == 2);
|
|
facets_to_refine.clear();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Adds new facets from the restricted Delaunay triangulation
|
|
|
|
void after_insertion_impl(const Vertex_handle& v) {
|
|
#ifdef CGAL_SURFACE_MESHER_DEBUG_AFTER_INSERTION
|
|
std::cerr << "Inserted\n";
|
|
#endif
|
|
restore_restricted_Delaunay(v);
|
|
}
|
|
|
|
void restore_restricted_Delaunay(const Vertex_handle& v)
|
|
{
|
|
Cell_handle cellule;
|
|
|
|
// On met a jour les flags des nouvelles facettes (celles a
|
|
// l'interieur du trou et celles sur le bord du trou)
|
|
|
|
std::list<Cell_handle> cellules;
|
|
tr.incident_cells (v, std::back_inserter(cellules));
|
|
|
|
while(!cellules.empty()) {
|
|
cellule=cellules.front();
|
|
cellules.pop_front();
|
|
|
|
// Look at all four facets of the cell, starting with the
|
|
// facet opposite to the new vertex
|
|
int indice = cellule->index (v);
|
|
handle_opposite_facet (Facet (cellule, indice));
|
|
|
|
for (int i = 1; i <= 3; ++i)
|
|
handle_incident_facet (Facet (cellule, (indice+i)&3));
|
|
}
|
|
|
|
|
|
// DEBUG: on ajoute un espace
|
|
//std::cout << " ";
|
|
|
|
} // restore_restricted_Delaunay end
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// Useless here
|
|
void after_no_insertion_impl(const Facet&, const Point&, Zone&) {}
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Private functions
|
|
private:
|
|
|
|
|
|
///////////////////////
|
|
// For before_insertion
|
|
|
|
// Actions to perform on a facet inside the conflict zone
|
|
void handle_facet_inside_conflict_zone (Facet f) {
|
|
Facet other_side = mirror_facet(f);
|
|
|
|
// On enleve la facette de la liste des mauvaises facettes
|
|
if(f.first < other_side.first)
|
|
facets_to_refine.erase(f);
|
|
else
|
|
facets_to_refine.erase(other_side);
|
|
|
|
// Le compteur des visites est remis a zero
|
|
reset_visited(f);
|
|
reset_visited(other_side);
|
|
|
|
// On retire la facette du complexe (car on doit etre
|
|
// independant de l'implementation du complexe)
|
|
c2t3.remove_from_complex (f);
|
|
}
|
|
|
|
// Action to perform on a facet on the boundary of the conflict zone
|
|
void handle_facet_on_boundary_of_conflict_zone (const Facet& f) {
|
|
// perform the same operations as for an internal facet
|
|
handle_facet_inside_conflict_zone (f);
|
|
}
|
|
|
|
|
|
|
|
///////////////////////
|
|
// For after_insertion
|
|
|
|
// Action to perform on a facet incident to the new vertex
|
|
void handle_incident_facet (const Facet& f) {
|
|
|
|
// If the facet is infinite or has been already visited,
|
|
// then there is nothing to do as for it or its edges
|
|
if (tr.is_infinite(f) || is_facet_visited(f))
|
|
return;
|
|
|
|
new_facet<false>(f);
|
|
}
|
|
|
|
// Action to perform on any new facet
|
|
template <bool remove_from_complex_if_not_in_rectricted_Delaunay>
|
|
void new_facet (const Facet& f) {
|
|
Facet other_side = mirror_facet(f);
|
|
|
|
// NB: set_facet_visited() is implementation dependant
|
|
// and each side of the real facet has to be considered
|
|
// separately
|
|
set_facet_visited(f);
|
|
set_facet_visited(other_side);
|
|
|
|
// On regarde d'abord si la facette est dans le Delaunay
|
|
// restreint
|
|
Point center;
|
|
if (is_facet_on_surface(f, center)) {
|
|
|
|
// NB: set_in_complex() is implementation independant and
|
|
// consider both sides of the facet at once
|
|
c2t3.set_in_complex(f);
|
|
|
|
// NB: set_facet_surface_center() is implementation dependant
|
|
// and each side of the real facet has to be considered
|
|
// separately
|
|
set_facet_surface_center(f, center);
|
|
set_facet_surface_center(other_side, center);
|
|
|
|
// On regarde alors si la facette est bonne
|
|
Quality a_r;
|
|
if (criteria.is_bad (f, a_r)) {
|
|
if(f.first < other_side.first)
|
|
facets_to_refine.insert (f, a_r);
|
|
else
|
|
facets_to_refine.insert (other_side, a_r);
|
|
}
|
|
}
|
|
else
|
|
if( remove_from_complex_if_not_in_rectricted_Delaunay )
|
|
c2t3.remove_from_complex(f);
|
|
}
|
|
|
|
// Action to perform on a facet opposite to the new vertex
|
|
void handle_opposite_facet (const Facet& f) {
|
|
// perform the same operations as for a facet incident to the
|
|
// new vertex
|
|
handle_incident_facet (f);
|
|
}
|
|
|
|
|
|
|
|
///////////////////////
|
|
// Predicate to test restricted Delaunay membership
|
|
|
|
|
|
// Tests whether a given facet is restricted or not
|
|
bool is_facet_on_surface(const Facet& f, Point& center) {
|
|
typedef typename Surface_mesh_traits::Intersect_3 Intersect_3;
|
|
Intersect_3 intersect = meshtraits.intersect_3_object();
|
|
|
|
Object dual = tr.dual(f);
|
|
|
|
// typename GT::Segment_3 segment;
|
|
typename GT::Segment_3 segment;
|
|
typename GT::Ray_3 ray;
|
|
typename GT::Line_3 line;
|
|
|
|
// If the dual is a segment
|
|
if (assign(segment, dual)) {
|
|
Object intersection = intersect(surf, segment);
|
|
if (assign(center,intersection))
|
|
return true;
|
|
}
|
|
|
|
// If the dual is a ray
|
|
else if(assign(ray, dual)) {
|
|
Object intersection = intersect(surf, ray);
|
|
//std::cerr << "intersection: " << std::endl;
|
|
if (assign(center,intersection))
|
|
return true;
|
|
}
|
|
|
|
// If the dual is a line
|
|
else if(assign(line, dual)) {
|
|
Object intersection = intersect(surf, line);
|
|
if (assign(center,intersection))
|
|
return true;
|
|
}
|
|
|
|
// Else there is a problem with the dual
|
|
else {
|
|
CGAL_assertion(false);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
protected:
|
|
|
|
|
|
// Checks restricted Delaunay triangulation
|
|
void check_restricted_delaunay () {
|
|
for (Finite_facets_iterator fit = tr.finite_facets_begin(); fit !=
|
|
tr.finite_facets_end(); ++fit) {
|
|
Facet other_side = mirror_facet(*fit);
|
|
CGAL_assertion (c2t3.face_status(*fit) ==
|
|
c2t3.face_status(other_side));
|
|
//CGAL_assertion (fit->first->is_facet_on_surface (fit->second) ==
|
|
// other_side.first->is_facet_on_surface
|
|
// (other_side.second));
|
|
bool restr, restr_bis;
|
|
Point center;
|
|
restr = is_facet_on_surface(*fit, center);
|
|
restr_bis = is_facet_on_surface(other_side, center);
|
|
CGAL_assertion (restr == restr_bis);
|
|
CGAL_assertion ((c2t3.face_status(*fit)
|
|
== C2T3::REGULAR) == restr);
|
|
CGAL_assertion ((c2t3.face_status(other_side)
|
|
== C2T3::REGULAR) == restr_bis);
|
|
//CGAL_assertion (fit->first->is_facet_on_surface (fit->second) ==
|
|
// restr);
|
|
//CGAL_assertion (other_side.first->is_facet_on_surface
|
|
// (other_side.second) == restr_bis);
|
|
|
|
if ( (c2t3.face_status(*fit) == C2T3::REGULAR) !=
|
|
is_facet_on_surface(*fit, center)) {
|
|
std::cerr << "Error in restricted Delaunay triangulation: ("
|
|
<< (c2t3.face_status(*fit) == C2T3::REGULAR)
|
|
<< "/"
|
|
<< is_facet_on_surface(*fit, center)
|
|
<< ")"
|
|
<< std::endl;
|
|
std::exit (-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string debug_info() const
|
|
{
|
|
std::stringstream s;
|
|
s << facets_to_refine.size();
|
|
return s.str();
|
|
}
|
|
|
|
}; // end Surface_mesher_base
|
|
|
|
namespace details {
|
|
|
|
template <typename Base, typename Self>
|
|
class Mesher_level_generator {
|
|
typedef typename Base::Complex_2_in_triangulation_3 C2T3;
|
|
typedef typename C2T3::Triangulation Triangulation;
|
|
typedef typename Triangulation::Facet Facet;
|
|
typedef Triangulation_mesher_level_traits_3<Triangulation> Tr_m_l_traits_3;
|
|
public:
|
|
typedef Mesher_level <Triangulation,
|
|
Self,
|
|
Facet,
|
|
Null_mesher_level,
|
|
Tr_m_l_traits_3> Type;
|
|
typedef Type type;
|
|
}; // end class Mesher_level_generator<Base, Self>
|
|
|
|
} // end namespace details
|
|
|
|
enum Debug_flag { DEBUG, NO_DEBUG};
|
|
enum Verbose_flag { VERBOSE, NOT_VERBOSE};
|
|
|
|
template <
|
|
typename Base,
|
|
Verbose_flag verbose = NOT_VERBOSE,
|
|
Debug_flag debug = NO_DEBUG
|
|
>
|
|
struct Surface_mesher
|
|
: public Base,
|
|
public details::Mesher_level_generator<Base,
|
|
Surface_mesher<Base> >::Type
|
|
{
|
|
public:
|
|
typedef typename Base::Complex_2_in_triangulation_3 C2T3;
|
|
typedef typename C2T3::Triangulation Triangulation;
|
|
typedef Triangulation Tr;
|
|
typedef typename Base::Surface Surface;
|
|
typedef typename Base::Criteria Criteria;
|
|
typedef typename Base::Surface_mesh_traits Surface_mesh_traits;
|
|
|
|
typedef Surface_mesher<Base> Self;
|
|
|
|
typedef typename details::Mesher_level_generator<Base,
|
|
Surface_mesher<Base> >::Type Mesher_lvl;
|
|
|
|
using Mesher_lvl::scan_triangulation;
|
|
using Mesher_lvl::refine;
|
|
using Mesher_lvl::is_algorithm_done;
|
|
using Mesher_lvl::one_step;
|
|
using Base::check_restricted_delaunay;
|
|
|
|
typedef C2T3 Complex_2_in_triangulation_3;
|
|
|
|
private:
|
|
Null_mesher_level null_mesher_level;
|
|
Null_mesh_visitor null_visitor;
|
|
bool initialized;
|
|
|
|
public:
|
|
Surface_mesher(C2T3& c2t3,
|
|
const Surface& surface,
|
|
const Surface_mesh_traits& mesh_traits,
|
|
const Criteria& criteria)
|
|
: Base(c2t3, surface, mesh_traits, criteria),
|
|
Mesher_lvl(null_mesher_level),
|
|
initialized(false)
|
|
{
|
|
#ifdef CGAL_SURFACE_MESHER_DEBUG_CONSTRUCTORS
|
|
std::cerr << "CONS: Surface_mesher\n";
|
|
#endif
|
|
}
|
|
|
|
// Initialization
|
|
void init()
|
|
{
|
|
scan_triangulation();
|
|
initialized = true;
|
|
if (debug == DEBUG)
|
|
check_restricted_delaunay();
|
|
}
|
|
|
|
void refine_mesh () {
|
|
if(!initialized)
|
|
init();
|
|
|
|
if (verbose == NOT_VERBOSE)
|
|
refine (null_visitor);
|
|
else {
|
|
std::cerr << "Refining...\n";
|
|
int nbsteps = 0;
|
|
std::cerr << "(" << nbsteps << ","
|
|
<< this->facets_to_refine.size() << ")";
|
|
while (!is_algorithm_done()) {
|
|
one_step (null_visitor);
|
|
std::cerr << "\r \r"
|
|
<< "(" << ++nbsteps << ","
|
|
<< this->debug_info()
|
|
<< ")";
|
|
}
|
|
std::cerr << "\ndone.\n";
|
|
}
|
|
|
|
if (debug == DEBUG)
|
|
check_restricted_delaunay();
|
|
|
|
initialized = false;
|
|
}
|
|
|
|
}; // end Surface_mesher
|
|
|
|
|
|
} // end namespace Surface_mesher
|
|
|
|
} // end namespace CGAL
|
|
|
|
|
|
#endif // CGAL_SURFACE_MESHER_SURFACE_MESHER_H
|
|
|