cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate...

43 lines
1.5 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous}
\ccDefinition
This \ccc{AdaptableFunctor} provides evaluation of a
\ccc{PolynomialTraits_d::Polynomial_d} interpreted as a homogeneous polynomial
in one variable. \\
For instance the polynomial $p = x^3 + x$ is interpreted as the homogeneous polynomial
$p(u,v) = u^3 + uv^2$ and evaluated as such.
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type u,
PolynomialTraits_d::Coefficient_type v);}
{ Returns $p(u,v)$, with respect to the outermost variable. \\
The homogeneous degree is considered as equal to the degree of $p$. }
\ccMethod{result_type operator()( PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type u,
PolynomialTraits_d::Coefficient_type v,
int i);}
{ Returns $p(u,v)$, with respect to the variable $x_i$. \\
The homogeneous degree is considered as equal to the $degree(p,i)$.
\ccPrecond $0 \leq i < d$}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}