mirror of https://github.com/CGAL/cgal
159 lines
4.8 KiB
C++
159 lines
4.8 KiB
C++
// Copyright (c) 2007-08 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL:
|
|
// $Id:
|
|
//
|
|
// Author(s) : Pierre Alliez and Laurent Saboret
|
|
|
|
#ifndef CGAL_AVERAGE_SPACING_3_H
|
|
#define CGAL_AVERAGE_SPACING_3_H
|
|
|
|
#include <CGAL/Search_traits_3.h>
|
|
#include <CGAL/Orthogonal_k_neighbor_search.h>
|
|
|
|
#include <iterator>
|
|
#include <list>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
|
|
/// Compute average spacing of one query point from K nearest neighbors.
|
|
///
|
|
/// Precondition: KNN >= 2.
|
|
///
|
|
/// @heading Parameters:
|
|
/// @param Kernel Geometric traits class.
|
|
/// @param Tree KD-tree.
|
|
///
|
|
/// @return average spacing (scalar).
|
|
template < typename Kernel,
|
|
typename Tree >
|
|
typename Kernel::FT
|
|
average_spacing_3(const typename Kernel::Point_3& query, ///< 3D point whose spacing we want to compute
|
|
Tree& tree, ///< KD-tree
|
|
unsigned int KNN) ///< number of neighbors
|
|
{
|
|
// basic geometric types
|
|
typedef typename Kernel::FT FT;
|
|
typedef typename Kernel::Point_3 Point;
|
|
typedef typename Kernel::Plane_3 Plane;
|
|
typedef typename Kernel::Vector_3 Vector;
|
|
|
|
// types for K nearest neighbors search
|
|
typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
|
|
typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
|
|
typedef typename Neighbor_search::iterator Search_iterator;
|
|
|
|
// performs KNN + 1 queries (if unique the query point is
|
|
// output first). search may be aborted when KNN is greater
|
|
// than number of input points
|
|
Neighbor_search search(tree,query,KNN+1);
|
|
Search_iterator search_iterator = search.begin();
|
|
FT sum_distances = (FT)0.0;
|
|
unsigned int i;
|
|
for(i=0;i<(KNN+1);i++)
|
|
{
|
|
if(search_iterator == search.end())
|
|
break; // premature ending
|
|
|
|
Point p = search_iterator->first;
|
|
sum_distances += std::sqrt(CGAL::squared_distance(query,p));
|
|
search_iterator++;
|
|
}
|
|
|
|
// output average spacing
|
|
return sum_distances / (FT)i;
|
|
}
|
|
|
|
|
|
/// Compute average spacing from K nearest neighbors.
|
|
/// This variant requires the kernel.
|
|
///
|
|
/// Precondition: KNN >= 2.
|
|
///
|
|
/// @heading Parameters:
|
|
/// @param InputIterator value_type is Point_3.
|
|
/// @param Kernel Geometric traits class.
|
|
///
|
|
/// @return average spacing (scalar).
|
|
template <typename InputIterator,
|
|
typename Kernel
|
|
>
|
|
typename Kernel::FT
|
|
average_spacing_3(InputIterator first, ///< input points
|
|
InputIterator beyond,
|
|
unsigned int KNN, ///< number of neighbors
|
|
const Kernel& /*kernel*/)
|
|
{
|
|
// types for K nearest neighbors search structure
|
|
typedef typename Kernel::FT FT;
|
|
typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
|
|
typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
|
|
typedef typename Neighbor_search::Tree Tree;
|
|
|
|
// precondition: at least one element in the container.
|
|
// to fix: should have at least three distinct points
|
|
// but this is costly to check
|
|
CGAL_precondition(first != beyond);
|
|
|
|
// precondition: at least 2 nearest neighbors
|
|
CGAL_precondition(KNN >= 2);
|
|
|
|
// instanciate a KD-tree search
|
|
Tree tree(first,beyond);
|
|
|
|
// iterate over input points, compute and output normal
|
|
// vectors (already normalized)
|
|
FT sum_spacings = (FT)0.0;
|
|
unsigned int nb_points = 0;
|
|
InputIterator it;
|
|
for(it = first; it != beyond; it++)
|
|
{
|
|
sum_spacings += average_spacing_3<Kernel,Tree>(*it,tree,KNN);
|
|
nb_points++;
|
|
}
|
|
|
|
// return average spacing
|
|
return sum_spacings / (FT)nb_points;
|
|
}
|
|
|
|
/// Compute average spacing from K nearest neighbors.
|
|
/// This variant deduces the kernel from iterator types.
|
|
///
|
|
/// Precondition: KNN >= 2.
|
|
///
|
|
/// @heading Parameters:
|
|
/// @param InputIterator value_type is Point_3.
|
|
/// @param FT number type.
|
|
///
|
|
/// @return average spacing (scalar)
|
|
template < typename InputIterator,
|
|
typename FT
|
|
>
|
|
FT
|
|
average_spacing_3(InputIterator first, ///< input points
|
|
InputIterator beyond,
|
|
unsigned int KNN) ///< number of neighbors
|
|
{
|
|
typedef typename std::iterator_traits<InputIterator>::value_type Value_type;
|
|
typedef typename Kernel_traits<Value_type>::Kernel Kernel;
|
|
return average_spacing_3(first,beyond,KNN,Kernel());
|
|
}
|
|
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_AVERAGE_SPACING_3_H
|
|
|