cgal/Hyperbolic_triangulation_2/include/CGAL/Exact_complex.h

166 lines
3.3 KiB
C++

// Copyright (c) 2017 INRIA Nancy - Grand Est (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: $
// $Id: $
//
//
// Author(s) : Iordan Iordanov
//
//
#ifndef CGAL_EXACT_COMPLEX_H
#define CGAL_EXACT_COMPLEX_H
#include <iostream>
#include <CGAL/assertions.h>
#include <CGAL/number_utils.h>
// Complex number in the form a + bi, where a and b are of type NT.
// NT must be an exact number type, model of:
// + FieldWithRootOf
// + RealEmbeddable
// + FromDoubleConstructible
//
namespace CGAL {
template <class NumberType>
class Exact_complex {
typedef Exact_complex<NumberType> Self;
private:
NumberType _a, _b;
public:
typedef NumberType NT;
Exact_complex() :
_a(0), _b(0) {}
Exact_complex(NT a, NT b) :
_a(a), _b(b) {}
NT real() const {
return _a;
}
void set_real(NT val) {
_a = val;
}
NT imag() const {
return _b;
}
void set_imag(NT val) {
_b = val;
}
Self conj() const {
return Self(_a, -_b);
}
NT square_modulus() const {
return (_a*_a + _b*_b);
}
NT modulus() const {
return CGAL::sqrt(this->square_modulus());
}
Self reciprocal() {
NT denom = _a*_a + _b*_b;
if (denom == NT(0)) {
return Self(0,0);
} else {
return Self(_a/denom, -_b/denom);
}
}
Self invert_in_unit_circle() {
return this->reciprocal().conj();
}
template <class Circle_2>
Self invert_in_circle(Circle_2 c) {
NT r2 = c.squared_radius();
NT xc = c.center().x();
NT yc = c.center().y();
NT denom = (_a - xc)*(_a - xc) + (_b - yc)*(_b - yc);
return Self(xc + r2*(_a-xc)/denom, yc + r2*(_b-yc)/denom);
}
Self operator+(const Self& other) const {
return Self(this->_a + other._a, this->_b + other._b);
}
Self operator-(const Self& other) const {
return Self(this->_a - other._a, this->_b - other._b);
}
Self operator*(const Self& other) const {
NT rp = _a*other._a - _b*other._b;
NT ip = _b*other._a + _a*other._b;
return Self(rp, ip);
}
Self operator/(const Self& other) const {
NT denom = other._a*other._a + other._b*other._b;
CGAL_assertion(denom != 0);
NT rp = _a*other._a + _b*other._b;
NT ip = _b*other._a - _a*other._b;
return Self(rp/denom, ip/denom);
}
};
template <class NT>
std::ostream& operator<<(std::ostream& s, const Exact_complex<NT>& c) {
s << c.real() << (c.imag() >= 0 ? " + " : " - ") << abs(c.imag()) << "i";
return s;
}
// just to give an ordering
template<class NT>
bool operator==( const Exact_complex<NT>& lh,
const Exact_complex<NT>& rh)
{
return (lh.real() == rh.real() && lh.imag() == rh.imag());
}
template<class NT>
bool operator!=( const Exact_complex<NT>& lh,
const Exact_complex<NT>& rh)
{
return !operator==(lh, rh);
}
// just to give an ordering
template<class NT>
bool operator<( const Exact_complex<NT>& lh,
const Exact_complex<NT>& rh)
{
return lh.square_modulus() < rh.square_modulus();
}
} // namespace CGAL
#endif // CGAL_EXACT_COMPLEX_H