mirror of https://github.com/CGAL/cgal
174 lines
7.3 KiB
C++
174 lines
7.3 KiB
C++
// Copyright (c) 2005 INRIA (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Laurent Saboret, Pierre Alliez, Bruno Levy
|
|
|
|
|
|
#ifndef CGAL_BARYCENTRIC_MAPPING_PARAMETERIZER_3_H
|
|
#define CGAL_BARYCENTRIC_MAPPING_PARAMETERIZER_3_H
|
|
|
|
#include <CGAL/Fixed_border_parameterizer_3.h>
|
|
#include <CGAL/surface_mesh_parameterization_assertions.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
|
|
/// The class Barycentric_mapping_parameterizer_3 implements Tutte Barycentric Mapping algorithm [Tut63].
|
|
/// This algorithm is also called "Tutte Uniform Weights" by other authors.
|
|
///
|
|
/// One-to-one mapping is guaranteed if the surface's border is mapped to a convex polygon.
|
|
///
|
|
/// This class is a Strategy [GHJV95] called by the main
|
|
/// parameterization algorithm Fixed_border_parameterizer_3::parameterize().
|
|
/// Barycentric_mapping_parameterizer_3:
|
|
/// - provides default BorderParameterizer_3 and SparseLinearAlgebraTraits_d template
|
|
/// parameters that make sense.
|
|
/// - implements compute_w_ij() to compute w_ij = (i,j) coefficient of matrix A
|
|
/// for j neighbor vertex of i based on Tutte Barycentric Mapping method.
|
|
/// - implements an optimized version of is_one_to_one_mapping().
|
|
///
|
|
/// @heading Is Model for the Concepts: Model of the ParameterizerTraits_3 concept.
|
|
///
|
|
/// @heading Design Pattern:
|
|
/// Barycentric_mapping_parameterizer_3 class is a
|
|
/// Strategy [GHJV95]: it implements a strategy of surface parameterization
|
|
/// for models of ParameterizationMesh_3.
|
|
///
|
|
/// @heading Parameters:
|
|
/// @param ParameterizationMesh_3 3D surface mesh.
|
|
/// @param BorderParameterizer_3 Strategy to parameterize the surface border.
|
|
/// @param SparseLinearAlgebraTraits_d Traits class to solve a sparse linear system.
|
|
/// Note: the system is NOT symmetric because Fixed_border_parameterizer_3
|
|
/// does not remove (yet) border vertices from the system.
|
|
|
|
template
|
|
<
|
|
class ParameterizationMesh_3,
|
|
class BorderParameterizer_3
|
|
= Circular_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
|
|
class SparseLinearAlgebraTraits_d
|
|
= OpenNL::DefaultLinearSolverTraits<typename ParameterizationMesh_3::NT>
|
|
>
|
|
class Barycentric_mapping_parameterizer_3
|
|
: public Fixed_border_parameterizer_3<ParameterizationMesh_3,
|
|
BorderParameterizer_3,
|
|
SparseLinearAlgebraTraits_d>
|
|
{
|
|
// Private types
|
|
private:
|
|
// Superclass
|
|
typedef Fixed_border_parameterizer_3<ParameterizationMesh_3,
|
|
BorderParameterizer_3,
|
|
SparseLinearAlgebraTraits_d>
|
|
Base;
|
|
|
|
// Public types
|
|
public:
|
|
// We have to repeat the types exported by superclass
|
|
/// @cond SKIP_IN_MANUAL
|
|
typedef typename Base::Error_code Error_code;
|
|
typedef ParameterizationMesh_3 Adaptor;
|
|
typedef BorderParameterizer_3 Border_param;
|
|
typedef SparseLinearAlgebraTraits_d Sparse_LA;
|
|
/// @endcond
|
|
|
|
// Private types
|
|
private:
|
|
// Mesh_Adaptor_3 subtypes:
|
|
typedef typename Adaptor::NT NT;
|
|
typedef typename Adaptor::Point_2 Point_2;
|
|
typedef typename Adaptor::Point_3 Point_3;
|
|
typedef typename Adaptor::Vector_2 Vector_2;
|
|
typedef typename Adaptor::Vector_3 Vector_3;
|
|
typedef typename Adaptor::Facet Facet;
|
|
typedef typename Adaptor::Facet_handle Facet_handle;
|
|
typedef typename Adaptor::Facet_const_handle
|
|
Facet_const_handle;
|
|
typedef typename Adaptor::Facet_iterator Facet_iterator;
|
|
typedef typename Adaptor::Facet_const_iterator
|
|
Facet_const_iterator;
|
|
typedef typename Adaptor::Vertex Vertex;
|
|
typedef typename Adaptor::Vertex_handle Vertex_handle;
|
|
typedef typename Adaptor::Vertex_const_handle
|
|
Vertex_const_handle;
|
|
typedef typename Adaptor::Vertex_iterator Vertex_iterator;
|
|
typedef typename Adaptor::Vertex_const_iterator
|
|
Vertex_const_iterator;
|
|
typedef typename Adaptor::Border_vertex_iterator
|
|
Border_vertex_iterator;
|
|
typedef typename Adaptor::Border_vertex_const_iterator
|
|
Border_vertex_const_iterator;
|
|
typedef typename Adaptor::Vertex_around_facet_circulator
|
|
Vertex_around_facet_circulator;
|
|
typedef typename Adaptor::Vertex_around_facet_const_circulator
|
|
Vertex_around_facet_const_circulator;
|
|
typedef typename Adaptor::Vertex_around_vertex_circulator
|
|
Vertex_around_vertex_circulator;
|
|
typedef typename Adaptor::Vertex_around_vertex_const_circulator
|
|
Vertex_around_vertex_const_circulator;
|
|
|
|
// SparseLinearAlgebraTraits_d subtypes:
|
|
typedef typename Sparse_LA::Vector Vector;
|
|
typedef typename Sparse_LA::Matrix Matrix;
|
|
|
|
// Public operations
|
|
public:
|
|
/// Constructor
|
|
Barycentric_mapping_parameterizer_3(Border_param border_param = Border_param(),
|
|
///< Object that maps the surface's border to 2D space.
|
|
Sparse_LA sparse_la = Sparse_LA())
|
|
///< Traits object to access a sparse linear system.
|
|
: Fixed_border_parameterizer_3<Adaptor,
|
|
Border_param,
|
|
Sparse_LA>(border_param, sparse_la)
|
|
{}
|
|
|
|
// Default copy constructor and operator =() are fine
|
|
|
|
// Protected operations
|
|
protected:
|
|
/// Compute w_ij = (i,j) coefficient of matrix A for j neighbor vertex of i.
|
|
virtual NT compute_w_ij(const Adaptor& /* mesh */,
|
|
Vertex_const_handle /* main_vertex_v_i */,
|
|
Vertex_around_vertex_const_circulator /* neighbor_vertex_v_j */ )
|
|
{
|
|
/// Tutte Barycentric Mapping algorithm is the most simple one:
|
|
/// w_ij = 1 for j neighbor vertex of i.
|
|
return 1;
|
|
}
|
|
|
|
/// Check if 3D -> 2D mapping is one-to-one.
|
|
virtual bool is_one_to_one_mapping (const Adaptor& /* mesh */,
|
|
const Matrix& /* A */,
|
|
const Vector& /* Bu */,
|
|
const Vector& /* Bv */)
|
|
{
|
|
/// Theorem: one-to-one mapping is guaranteed if all w_ij coefficients
|
|
/// are > 0 (for j vertex neighbor of i) and if the surface
|
|
/// border is mapped onto a 2D convex polygon.
|
|
/// All w_ij coefficients = 1 (for j vertex neighbor of i), thus mapping
|
|
/// is guaranteed if the surface border is mapped onto a 2D convex polygon.
|
|
return Base::get_border_parameterizer().is_border_convex ();
|
|
}
|
|
};
|
|
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif //CGAL_BARYCENTRIC_MAPPING_PARAMETERIZER_3_H
|
|
|