cgal/Kernel_23/doc_tex/Kernel_23_ref/Line_3.tex

87 lines
3.0 KiB
TeX

\begin{ccRefClass} {Line_3<Kernel>}
\ccDefinition
An object \ccStyle{l} of the data type \ccRefName\ is a directed
straight line in the three-dimensional Euclidean space $\E^3$.
\ccCreation
\ccCreationVariable{l}
\ccHidden \ccConstructor{Line_3();}
{introduces an uninitialized variable \ccVar.}
\ccHidden \ccConstructor{Line_3(const Line_3<Kernel> &h);}
{copy constructor.}
\ccConstructor{Line_3(const Point_3<Kernel> &p, const Point_3<Kernel> &q);}
{introduces a line \ccVar\ passing through the points $p$ and $q$.
Line \ccVar\ is directed from $p$ to $q$.}
\ccConstructor{Line_3(const Point_3<Kernel> &p, const Direction_3<Kernel>&d)}
{introduces a line \ccVar\ passing through point $p$ with
direction $d$.}
\ccConstructor{Line_3(const Point_3<Kernel> &p, const Vector_3<Kernel>&v)}
{introduces a line \ccVar\ passing through point $p$ and
oriented by $v$.}
\ccConstructor{Line_3(const Segment_3<Kernel> &s);}
{returns the line supporting the segment $s$,
oriented from source to target.}
\ccConstructor{Line_3(const Ray_3<Kernel> &r);}
{returns the line supporting the ray $r$, with the
same orientation.}
\ccOperations
\ccSetThreeColumns{Direction_3<Kernel> }{}{\hspace*{8.5cm}}
\ccHidden \ccMethod{Line_3<Kernel> & operator=(const Line_3<Kernel> &h);}
{Assignment.}
\ccMethod{bool operator==(const Line_3<Kernel> &h) const;}
{Test for equality: two lines are equal, iff they have a non
empty \ccHtmlNoLinksFrom{intersection} and the same direction.}
\ccMethod{bool operator!=(const Line_3<Kernel> &h) const;}
{Test for inequality.}
\ccMethod{Point_3<Kernel> projection(const Point_3<Kernel> &p) const;}
{returns the orthogonal \ccHtmlNoLinksFrom{projection} of $p$ on \ccVar.}
\ccMethod{Point_3<Kernel> point(int i) const;}
{returns an arbitrary point on \ccVar. It holds
\ccStyle{point(i) = point(j)}, iff \ccStyle{i=j}.}
\ccPredicates
\ccMethod{bool is_degenerate() const;}
{returns \ccc{true} iff line \ccVar\ is degenerated to a point.}
\ccMethod{bool has_on(const Point_3<Kernel> &p) const;}
{returns \ccc{true} iff \ccc{p} lies on \ccVar.}
\ccHeading{Miscellaneous}
\ccMethod{Plane_3<Kernel> perpendicular_plane(const Point_3<Kernel> &p) const;}
{returns the plane perpendicular to \ccVar\ passing through $p$.}
\ccMethod{Line_3<Kernel> opposite() const;}
{returns the line with opposite direction.}
\ccMethod{Vector_3<Kernel> to_vector() const;}
{returns a vector having the same direction as \ccVar.}
\ccMethod{Direction_3<Kernel> direction() const;}
{returns the direction of \ccVar.}
\ccMethod{Line_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;}
{returns the line obtained by applying $t$ on a point on \ccVar\
and the direction of \ccVar.}
\ccSeeAlso
\ccRefConceptPage{Kernel::Line_3}
\end{ccRefClass}