cgal/Interval_arithmetic/include/CGAL/Lazy_exact_nt.h

951 lines
26 KiB
C++

// Copyright (c) 1999-2005 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $Source$
// $Revision$ $Date$
// $Name$
//
// Author(s) : Sylvain Pion
#ifndef CGAL_LAZY_EXACT_NT_H
#define CGAL_LAZY_EXACT_NT_H
#include <CGAL/basic.h>
#include <CGAL/tags.h>
#include <CGAL/number_utils.h>
#include <CGAL/number_utils_classes.h>
#include <CGAL/Number_type_traits.h>
#include <CGAL/Interval_nt.h>
#include <CGAL/Handle.h>
#include <CGAL/Filtered_exact.h> // to get the overloaded predicates.
#include <CGAL/Kernel/mpl.h>
#include <CGAL/NT_converter.h>
#include <CGAL/Binary_operator_result.h>
#include <CGAL/Lazy_exact_nt_fwd.h>
#include <boost/operators.hpp>
/*
* This file contains the definition of the number type Lazy_exact_nt<ET>,
* where ET is an exact number type (must provide the exact operations needed).
*
* Lazy_exact_nt<ET> provides a DAG-based lazy evaluation, like LEDA's real,
* Core's Expr, LEA's lazy rationals...
*
* The values are first approximated using Interval_base.
* The exactness is provided when needed by ET.
*
* Lazy_exact_nt<ET> is just a handle to the abstract base class
* Lazy_exact_rep which has pure virtual methods .approx() and .exact().
* From this class derives one class per operation, with one constructor.
*
* The DAG is managed by :
* - Handle and Rep.
* - virtual functions to denote the various operators (instead of an enum).
*
* Other packages with vaguely similar design : APU, MetaCGAL, LOOK.
*/
/*
* TODO :
* - Generalize it for constructions at the kernel level.
* - Add mixed operations with ET too ?
* - Interval refinement functionnality ?
* - Separate the handle and the representation(s) in 2 files (?)
* maybe not a good idea, better if everything related to one operation is
* close together.
* - Add a CT template parameter like Filtered_exact_nt<> ?
* - Add a string constant to provide an expression string (a la MetaCGAL) ?
* // virtual ostream operator<<() const = 0; // or string, like Core ?
* - Have a template-expression (?) thing that evaluates a temporary element,
* and allocates stuff in memory only when really needs to convert to the
* NT. (cf gmp++, and maybe other things, Blitz++, Synaps...)
*/
/*
* Interface of the rep classes:
* - .approx() returns Interval_nt<> (assumes rounding=nearest).
* [ only called from the handle, and declared in the base ]
* - .exact() returns ET, if not already done, computes recursively
*
* - .rafine_approx() ??
*/
CGAL_BEGIN_NAMESPACE
#ifdef CGAL_LAZY_KERNEL_DEBUG
template <class T>
void
print_at(std::ostream& os, const T& at)
{
os << at;
}
template <class T>
void
print_at(std::ostream& os, const std::vector<T>& at)
{
os << "std::vector";
}
template <>
void
print_at(std::ostream& os, const Object& o)
{
os << "CGAL::Object";
}
template <class T1, class T2>
void
print_at(std::ostream& os, const std::pair<T1,T2> & at)
{
os << "[ " << at.first << " | " << at.second << " ]" << std::endl ;
}
template <class ET>
class Lazy_exact_nt;
template <typename ET>
inline
void
print_dag(const Lazy_exact_nt<ET>& l, std::ostream& os, int level=0)
{
l.print_dag(os, level);
}
inline
void
print_dag(double d, std::ostream& os, int level)
{
for(int i = 0; i < level; i++){
os << " ";
}
os << d << std::endl;
}
void
msg(std::ostream& os, int level, char* s)
{
int i;
for(i = 0; i < level; i++){
os << " ";
}
os << s << std::endl;
}
inline
void
print_dag(const Null_vector& nv, std::ostream& os, int level)
{
for(int i = 0; i < level; i++){
os << " ";
}
os << "Null_vector" << std::endl;
}
inline
void
print_dag(const Origin& nv, std::ostream& os, int level)
{
for(int i = 0; i < level; i++){
os << " ";
}
os << "Origin" << std::endl;
}
#endif
// Abstract base class for lazy numbers and lazy objects
template <typename AT_, typename ET, typename E2A>
struct Lazy_construct_rep : public Rep
{
typedef AT_ AT;
AT at;
mutable ET *et;
Lazy_construct_rep ()
: at(), et(NULL) {}
Lazy_construct_rep (const AT& a)
: at(a), et(NULL)
{}
Lazy_construct_rep (const AT& a, const ET& e)
: at(a), et(new ET(e))
{}
private:
Lazy_construct_rep (const Lazy_construct_rep&) { abort(); } // cannot be copied.
public:
const AT& approx() const
{
return at;
}
AT& approx()
{
return at;
}
const ET & exact() const
{
if (et==NULL)
update_exact();
return *et;
}
ET & exact()
{
if (et==NULL)
update_exact();
return *et;
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void print_at_et(std::ostream& os, int level) const
{
for(int i = 0; i < level; i++){
os << " ";
}
os << "Approximation: ";
CGAL::print_at(os, at);
os << std::endl;
if(! is_lazy()){
for(int i = 0; i < level; i++){
os << " ";
}
os << "Exact: ";
CGAL::print_at(os, *et);
os << std::endl;
}
}
virtual void print_dag(std::ostream& os, int level) const {}
#endif
bool is_lazy() const { return et == NULL; }
virtual void update_exact() = 0;
virtual int depth() const { return 1; }
virtual ~Lazy_construct_rep () { delete et; };
};
// Abstract base representation class for lazy numbers
template <typename ET>
struct Lazy_exact_rep : public Lazy_construct_rep<Interval_nt<false>,
ET, To_interval<ET> >
{
typedef Lazy_construct_rep<Interval_nt<false>, ET, To_interval<ET> > Base;
Lazy_exact_rep (const Interval_nt<false> & i)
: Base(i) {}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
}
#endif
private:
Lazy_exact_rep (const Lazy_exact_rep&) { abort(); } // cannot be copied.
};
// int constant
template <typename ET>
struct Lazy_exact_Int_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Int_Cst (int i)
: Lazy_exact_rep<ET>(double(i)) {}
void update_exact() { this->et = new ET((int)this->approx().inf()); }
};
// double constant
template <typename ET>
struct Lazy_exact_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Cst (double d)
: Lazy_exact_rep<ET>(d) {}
void update_exact() { this->et = new ET(this->approx().inf()); }
};
// Exact constant
template <typename ET>
struct Lazy_exact_Ex_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Ex_Cst (const ET & e)
: Lazy_exact_rep<ET>(to_interval(e))
{
this->et = new ET(e);
}
void update_exact() { CGAL_assertion(false); }
};
// Construction from a Lazy_exact_nt<ET1> (which keeps the lazyness).
template <typename ET, typename ET1>
class Lazy_lazy_exact_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_nt<ET1> l;
public:
Lazy_lazy_exact_Cst (const Lazy_exact_nt<ET1> &x)
: Lazy_exact_rep<ET>(x.approx()), l(x) {}
void update_exact()
{
this->et = new ET(l.exact());
this->approx() = l.approx();
prune_dag();
}
int depth() const { return l.depth() + 1; }
void prune_dag() { l = Lazy_exact_nt<ET1>::zero(); }
};
// Unary operations: abs, sqrt, square.
// Binary operations: +, -, *, /, min, max.
// Base unary operation
template <typename ET>
struct Lazy_exact_unary : public Lazy_exact_rep<ET>
{
Lazy_exact_nt<ET> op1;
Lazy_exact_unary (const Interval_nt<false> &i, const Lazy_exact_nt<ET> &a)
: Lazy_exact_rep<ET>(i), op1(a) {}
int depth() const { return op1.depth() + 1; }
void prune_dag() { op1 = Lazy_exact_nt<ET>::zero(); }
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "Unary number operator:");
CGAL::print_dag(op1, os, level+1);
}
}
#endif
};
// Base binary operation
template <typename ET, typename ET1 = ET, typename ET2 = ET>
struct Lazy_exact_binary : public Lazy_exact_rep<ET>
{
Lazy_exact_nt<ET1> op1;
Lazy_exact_nt<ET2> op2;
Lazy_exact_binary (const Interval_nt<false> &i,
const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b)
: Lazy_exact_rep<ET>(i), op1(a), op2(b) {}
int depth() const { return std::max(op1.depth(), op2.depth()) + 1; }
void prune_dag()
{
op1 = Lazy_exact_nt<ET1>::zero();
op2 = Lazy_exact_nt<ET2>::zero();
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "Binary number operator:");
CGAL::print_dag(op1, os, level+1);
CGAL::print_dag(op2, os, level+1);
}
}
#endif
};
// Here we could use a template class for all operations (STL provides
// function objects plus, minus, multiplies, divides...). But it would require
// a template template parameter, and GCC 2.95 seems to crash easily with them.
#ifndef CGAL_CFG_COMMA_BUG
// Macro for unary operations
#define CGAL_LAZY_UNARY_OP(OP, NAME) \
template <typename ET> \
struct NAME : public Lazy_exact_unary<ET> \
{ \
typedef typename Lazy_exact_unary<ET>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET> &a) \
: Lazy_exact_unary<ET>((P(), OP(a.approx())), a) {} \
\
void update_exact() \
{ \
this->et = new ET(OP(this->op1.exact())); \
if (!this->approx().is_point()) \
this->approx() = CGAL::to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
#else
// Macro for unary operations
#define CGAL_LAZY_UNARY_OP(OP, NAME) \
template <typename ET> \
struct NAME : public Lazy_exact_unary<ET> \
{ \
typedef typename Lazy_exact_unary<ET>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET> &a) \
: Lazy_exact_unary<ET>(a.approx() /* dummy value */, a) \
{ P p; this->approx() = OP(a.approx()); } \
\
void update_exact() \
{ \
this->et = new ET(OP(this->op1.exact())); \
if (!this->approx().is_point()) \
this->approx() = CGAL::to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
#endif
CGAL_LAZY_UNARY_OP(CGAL::opposite, Lazy_exact_Opp)
CGAL_LAZY_UNARY_OP(CGAL_NTS abs, Lazy_exact_Abs)
CGAL_LAZY_UNARY_OP(CGAL_NTS square, Lazy_exact_Square)
CGAL_LAZY_UNARY_OP(CGAL::sqrt, Lazy_exact_Sqrt)
#ifndef CGAL_CFG_COMMA_BUG
// A macro for +, -, * and /
#define CGAL_LAZY_BINARY_OP(OP, NAME) \
template <typename ET, typename ET1 = ET, typename ET2 = ET> \
struct NAME : public Lazy_exact_binary<ET, ET1, ET2> \
{ \
typedef typename Lazy_exact_binary<ET,ET1,ET2>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b) \
: Lazy_exact_binary<ET, ET1, ET2>((P(), a.approx() OP b.approx()), a, b) {} \
\
void update_exact() \
{ \
this->et = new ET(this->op1.exact() OP this->op2.exact()); \
if (!this->approx().is_point()) \
this->approx() = CGAL::to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
#else
// A macro for +, -, * and /
#define CGAL_LAZY_BINARY_OP(OP, NAME) \
template <typename ET, typename ET1 = ET, typename ET2 = ET> \
struct NAME : public Lazy_exact_binary<ET, ET1, ET2> \
{ \
typedef typename Lazy_exact_binary<ET, ET1, ET2>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b) \
: Lazy_exact_binary<ET, ET1, ET2>(a.approx() /* dummy value */, a, b)\
{P p; this->approx() = a.approx() OP b.approx(); } \
\
void update_exact() \
{ \
this->et = new ET(this->op1.exact() OP this->op2.exact()); \
if (!this->approx().is_point()) \
this->approx() = CGAL::to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
#endif
CGAL_LAZY_BINARY_OP(+, Lazy_exact_Add)
CGAL_LAZY_BINARY_OP(-, Lazy_exact_Sub)
CGAL_LAZY_BINARY_OP(*, Lazy_exact_Mul)
CGAL_LAZY_BINARY_OP(/, Lazy_exact_Div)
// Minimum
template <typename ET>
struct Lazy_exact_Min : public Lazy_exact_binary<ET>
{
Lazy_exact_Min (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_binary<ET>(min(a.approx(), b.approx()), a, b) {}
void update_exact()
{
this->et = new ET(min(this->op1.exact(), this->op2.exact()));
if (!this->approx().is_point()) this->approx() = CGAL::to_interval(*(this->et));
this->prune_dag();
}
};
// Maximum
template <typename ET>
struct Lazy_exact_Max : public Lazy_exact_binary<ET>
{
Lazy_exact_Max (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_binary<ET>(max(a.approx(), b.approx()), a, b) {}
void update_exact()
{
this->et = new ET(max(this->op1.exact(), this->op2.exact()));
if (!this->approx().is_point()) this->approx() = CGAL::to_interval(*(this->et));
this->prune_dag();
}
};
#define CGAL_int(T) typename First_if_different<int, T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type
// The real number type, handle class
template <typename ET>
class Lazy_exact_nt
: public Handle
, boost::ordered_euclidian_ring_operators2< Lazy_exact_nt<ET>, int >
, boost::ordered_euclidian_ring_operators2< Lazy_exact_nt<ET>, double >
{
typedef Lazy_exact_nt<ET> Self;
typedef Lazy_construct_rep<Interval_nt<false>, ET, To_interval<ET> > Self_rep;
public :
typedef typename Number_type_traits<ET>::Has_gcd Has_gcd;
typedef typename Number_type_traits<ET>::Has_division Has_division;
typedef typename Number_type_traits<ET>::Has_sqrt Has_sqrt;
typedef typename Number_type_traits<ET>::Has_exact_sqrt Has_exact_sqrt;
typedef typename Number_type_traits<ET>::Has_exact_division
Has_exact_division;
typedef typename Number_type_traits<ET>::Has_exact_ring_operations
Has_exact_ring_operations;
Lazy_exact_nt (Self_rep *r)
{ PTR = r; }
Lazy_exact_nt ()
: Handle(zero()) {}
Lazy_exact_nt (const CGAL_int(ET) & i)
{ PTR = new Lazy_exact_Int_Cst<ET>(i); }
Lazy_exact_nt (const CGAL_double(ET) & d)
{ PTR = new Lazy_exact_Cst<ET>(d); }
Lazy_exact_nt (const ET & e)
{ PTR = new Lazy_exact_Ex_Cst<ET>(e); }
template <class ET1>
Lazy_exact_nt (const Lazy_exact_nt<ET1> &x)
{ PTR = new Lazy_lazy_exact_Cst<ET, ET1>(x); }
Self operator- () const
{ return new Lazy_exact_Opp<ET>(*this); }
Self & operator+=(const Self& b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(const Self& b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(const Self& b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(const Self& b)
{ return *this = new Lazy_exact_Div<ET>(*this, b); }
// Mixed operators. (could be optimized ?)
Self & operator+=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Div<ET>(*this, b); }
Self & operator+=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Div<ET>(*this, b); }
// % kills filtering
Self & operator%=(const Self& b)
{
ET res = exact();
res %= b.exact();
return *this = Lazy_exact_nt<ET>(res);
}
Self & operator%=(int b)
{
ET res = exact();
res %= b;
return *this = Lazy_exact_nt<ET>(res);
}
Interval_nt<true> interval() const
{
const Interval_nt<false>& i = approx();
return Interval_nt<true>(i.inf(), i.sup());
}
const Interval_nt<false>& approx() const
{ return ptr()->approx(); }
Interval_nt_advanced approx_adv() const
{ return ptr()->approx(); }
const ET & exact() const
{ return ptr()->exact(); }
int depth() const
{ return ptr()->depth(); }
void
print_dag(std::ostream& os, int level) const
{
ptr()->print_dag(os, level);
}
static const double & get_relative_precision_of_to_double()
{
return relative_precision_of_to_double;
}
static void set_relative_precision_of_to_double(const double & d)
{
CGAL_assertion(d > 0 && d < 1);
relative_precision_of_to_double = d;
}
bool identical(const Self& b) const
{
return CGAL::identical(static_cast<const Handle &>(*this),
static_cast<const Handle &>(b));
}
template < typename T >
bool identical(const T&) const
{ return false; }
// We have a static variable for optimizing zero and default constructor.
static const Self & zero()
{
static const Self z = new Lazy_exact_Int_Cst<ET>(0);
return z;
}
private:
Self_rep * ptr() const { return (Self_rep*) PTR; }
static double relative_precision_of_to_double;
};
template <typename ET>
double Lazy_exact_nt<ET>::relative_precision_of_to_double = 0.00001;
template <typename ET1, typename ET2>
bool
operator<(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
if (a.identical(b))
return false;
Uncertain<bool> res = a.approx() < b.approx();
if (is_singleton(res))
return res;
return a.exact() < b.exact();
}
template <typename ET1, typename ET2>
bool
operator==(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
if (a.identical(b))
return true;
Uncertain<bool> res = a.approx() == b.approx();
if (is_singleton(res))
return res;
return a.exact() == b.exact();
}
template <typename ET1, typename ET2>
inline
bool
operator>(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return b < a; }
template <typename ET1, typename ET2>
inline
bool
operator>=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return ! (a < b); }
template <typename ET1, typename ET2>
inline
bool
operator<=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return b >= a; }
template <typename ET1, typename ET2>
inline
bool
operator!=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return ! (a == b); }
template <typename ET>
inline
Lazy_exact_nt<ET>
operator%(const Lazy_exact_nt<ET>& a, const Lazy_exact_nt<ET>& b)
{ return Lazy_exact_nt<ET>(a) %= b; }
// Mixed operators with int.
template <typename ET>
bool
operator<(const Lazy_exact_nt<ET>& a, int b)
{
Uncertain<bool> res = a.approx() < b;
if (is_singleton(res))
return res;
return a.exact() < b;
}
template <typename ET>
bool
operator>(const Lazy_exact_nt<ET>& a, int b)
{
Uncertain<bool> res = b < a.approx();
if (is_singleton(res))
return res;
return b < a.exact();
}
template <typename ET>
bool
operator==(const Lazy_exact_nt<ET>& a, int b)
{
Uncertain<bool> res = b == a.approx();
if (is_singleton(res))
return res;
return b == a.exact();
}
// Mixed operators
template < typename ET1, typename ET2 >
struct Binary_operator_result < Lazy_exact_nt<ET1>, Lazy_exact_nt<ET2> >
{
typedef Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type > type;
};
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type >
operator+(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
return new Lazy_exact_Add<typename Binary_operator_result<ET1, ET2>::type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type >
operator-(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
return new Lazy_exact_Sub<typename Binary_operator_result<ET1, ET2>::type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type >
operator*(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
return new Lazy_exact_Mul<typename Binary_operator_result<ET1, ET2>::type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type >
operator/(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
return new Lazy_exact_Div<typename Binary_operator_result<ET1, ET2>::type,
ET1, ET2>(a, b);
}
template <typename ET>
double
to_double(const Lazy_exact_nt<ET> & a)
{
const Interval_nt<false>& app = a.approx();
if (app.sup() == app.inf())
return app.sup();
// If it's precise enough, then OK.
if ((app.sup() - app.inf())
< Lazy_exact_nt<ET>::get_relative_precision_of_to_double()
* std::max(std::fabs(app.inf()), std::fabs(app.sup())) )
return CGAL::to_double(app);
// Otherwise we trigger exact computation first,
// which will refine the approximation.
a.exact();
return CGAL::to_double(a.approx());
}
template <typename ET>
inline
std::pair<double,double>
to_interval(const Lazy_exact_nt<ET> & a)
{
return a.approx().pair();
}
template <typename ET>
inline
Sign
sign(const Lazy_exact_nt<ET> & a)
{
Uncertain<Sign> res = sign(a.approx());
if (is_singleton(res))
return res;
return CGAL_NTS sign(a.exact());
}
template <typename ET1, typename ET2>
inline
Comparison_result
compare(const Lazy_exact_nt<ET1> & a, const Lazy_exact_nt<ET2> & b)
{
if (a.identical(b))
return EQUAL;
Uncertain<Comparison_result> res = compare(a.approx(), b.approx());
if (is_singleton(res))
return res;
return CGAL_NTS compare(a.exact(), b.exact());
}
template <typename ET>
inline
Lazy_exact_nt<ET>
abs(const Lazy_exact_nt<ET> & a)
{ return new Lazy_exact_Abs<ET>(a); }
template <typename ET>
inline
Lazy_exact_nt<ET>
square(const Lazy_exact_nt<ET> & a)
{ return new Lazy_exact_Square<ET>(a); }
template <typename ET>
inline
Lazy_exact_nt<ET>
sqrt(const Lazy_exact_nt<ET> & a)
{ return new Lazy_exact_Sqrt<ET>(a); }
template <typename ET>
inline
Lazy_exact_nt<ET>
min(const Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return new Lazy_exact_Min<ET>(a, b); }
template <typename ET>
inline
Lazy_exact_nt<ET>
max(const Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return new Lazy_exact_Max<ET>(a, b); }
// gcd kills filtering.
template <typename ET>
Lazy_exact_nt<ET>
gcd(const Lazy_exact_nt<ET>& a, const Lazy_exact_nt<ET>& b)
{
return Lazy_exact_nt<ET>(CGAL_NTS gcd(a.exact(), b.exact()));
}
template <typename ET>
std::ostream &
operator<< (std::ostream & os, const Lazy_exact_nt<ET> & a)
{ return os << CGAL::to_double(a); }
template <typename ET>
std::istream &
operator>> (std::istream & is, Lazy_exact_nt<ET> & a)
{
ET e;
is >> e;
a = e;
return is;
}
template <typename ET>
inline
bool
is_finite(const Lazy_exact_nt<ET> & a)
{
return is_finite(a.approx()) || is_finite(a.exact());
}
template <typename ET>
inline
bool
is_valid(const Lazy_exact_nt<ET> & a)
{
return is_valid(a.approx()) || is_valid(a.exact());
}
template <typename ET>
inline
io_Operator
io_tag (const Lazy_exact_nt<ET>&)
{ return io_Operator(); }
template < typename ET >
struct NT_converter < Lazy_exact_nt<ET>, ET >
{
const ET& operator()(const Lazy_exact_nt<ET> &a) const
{ return a.exact(); }
};
// Returns true if the value is representable by a double and to_double()
// would return it. False means "don't know".
template < typename ET >
inline bool
fit_in_double(const Lazy_exact_nt<ET>& l, double& r)
{ return fit_in_double(l.approx(), r); }
#undef CGAL_double
#undef CGAL_int
CGAL_END_NAMESPACE
#endif // CGAL_LAZY_EXACT_NT_H