cgal/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangu...

646 lines
18 KiB
C++

// Copyright (c) 2010-2016 INRIA Sophia Antipolis, INRIA Nancy (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL:
// $Id:
//
//
// Author(s) : Mikhail Bogdanov
// Monique Teillaud <Monique.Teillaud@inria.fr>
#ifndef CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_2_H
#define CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_2_H
#include <CGAL/Triangulation_face_base_with_info_2.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <stack>
#include <set>
namespace CGAL {
class Hyperbolic_face_info_2
{
public:
Hyperbolic_face_info_2() : _is_finite_non_hyperbolic(false), _non_hyperbolic_edge(UCHAR_MAX)
{
}
bool is_finite_non_hyperbolic() const
{
return _is_finite_non_hyperbolic;
}
void set_finite_non_hyperbolic(bool is_finite_non_hyperbolic)
{
_is_finite_non_hyperbolic = is_finite_non_hyperbolic;
}
// Supposed to be called before "get_non_hyperbolic_edge"
bool has_non_hyperbolic_edge() const
{
return _non_hyperbolic_edge <= 2;
}
// Higly recommended to call "has_non_hyperbolic_edge" before
unsigned char get_non_hyperbolic_edge() const
{
assert(_is_finite_non_hyperbolic);
assert(_non_hyperbolic_edge <= 2);
return _non_hyperbolic_edge;
}
void set_non_hyperbolic_edge(unsigned char non_hyperbolic_edge)
{
assert(_is_finite_non_hyperbolic);
assert(non_hyperbolic_edge <= 2);
_non_hyperbolic_edge = non_hyperbolic_edge;
}
private:
// a finite face is non_hyperbolic if its circumscribing circle intersects the circle at infinity
bool _is_finite_non_hyperbolic;
// defined only if the face is finite and non_hyperbolic
unsigned char _non_hyperbolic_edge;
};
template < class Gt,
class Tds = Triangulation_data_structure_2 <
Triangulation_vertex_base_2<Gt>,
Triangulation_face_base_with_info_2<Hyperbolic_face_info_2, Gt> > >
class Hyperbolic_Delaunay_triangulation_2 : public Delaunay_triangulation_2<Gt,Tds>
{
public:
typedef Hyperbolic_Delaunay_triangulation_2<Gt, Tds> Self;
typedef Delaunay_triangulation_2<Gt,Tds> Base;
typedef Triangulation_face_base_with_info_2<Hyperbolic_face_info_2, Gt> Face_base;
typedef typename Face_base::Info Face_info;
typedef typename Base::size_type size_type;
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Face_handle Face_handle;
typedef typename Base::Edge Edge;
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
using Base::cw;
using Base::ccw;
using Base::geom_traits;
#endif
typedef typename Base::Edge_circulator Edge_circulator;
typedef typename Base::Face_circulator Face_circulator;
typedef typename Base::Vertex_circulator Vertex_circulator;
typedef typename Base::All_vertices_iterator All_vertices_iterator;
typedef typename Base::All_edges_iterator All_edges_iterator;
typedef typename Base::All_faces_iterator All_faces_iterator;
typedef Gt Geom_traits;
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Point_2 Point;
typedef typename Geom_traits::Segment_2 Segment;
/*
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
using Triangulation::side_of_oriented_circle;
using Triangulation::circumcenter;
using Triangulation::collinear_between;
using Triangulation::test_dim_down;
using Triangulation::make_hole;
using Triangulation::fill_hole_delaunay;
using Triangulation::delete_vertex;
#endif
*/
Hyperbolic_Delaunay_triangulation_2(const Gt& gt = Gt())
: Delaunay_triangulation_2<Gt,Tds>(gt) {}
Hyperbolic_Delaunay_triangulation_2(
const Hyperbolic_Delaunay_triangulation_2<Gt,Tds> &tr)
: Delaunay_triangulation_2<Gt,Tds>(tr)
{ CGAL_triangulation_postcondition( this->is_valid() );}
void mark_star(Vertex_handle v) const
{
if(!is_star_bounded(v)) {
mark_star_faces(v);
}
}
Vertex_handle insert(const Point &p,
Face_handle start = Face_handle() )
{
Vertex_handle v = Base::insert(p, start);
mark_star(v);
return v;
}
Vertex_handle insert(const Point& p,
typename Base::Locate_type lt,
Face_handle loc, int li )
{
Vertex_handle v = Base::insert(p, lt, loc, li);
mark_star(v);
return v;
}
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first, InputIterator last,
typename boost::enable_if<
boost::is_base_of<
Point,
typename std::iterator_traits<InputIterator>::value_type
>
>::type* = NULL
)
#else
template < class InputIterator >
std::ptrdiff_t
insert(InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
{
size_type n = Base::insert(first, last);
mark_finite_non_hyperbolic_faces();
return n;
}
//test version of insert function
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class InputIterator >
std::ptrdiff_t
insert2( InputIterator first, InputIterator last,
typename boost::enable_if<
boost::is_base_of<
Point,
typename std::iterator_traits<InputIterator>::value_type
>
>::type* = NULL
)
#else
template < class InputIterator >
std::ptrdiff_t
insert_2(InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
{
size_type n = this->number_of_vertices();
spatial_sort(first, last, geom_traits());
Face_handle f;
while(first != last) {
f = insert (*first++, f)->face();
}
return this->number_of_vertices() - n;
}
bool is_infinite(Vertex_handle v) const
{
return Base::is_infinite(v);
}
bool is_non_hyperbolic(Face_handle f) const
{
return has_infinite_vertex(f) || is_finite_non_hyperbolic(f);
}
bool is_non_hyperbolic(Face_handle f, int i) const
{
return has_infinite_vertex(f, i) || is_finite_non_hyperbolic(f, i);
}
bool is_non_hyperbolic(const Edge& e) const
{
return is_non_hyperbolic(e.first, e.second);
}
bool is_non_hyperbolic(const Edge_circulator& ec) const
{
return is_non_hyperbolic(*ec);
}
bool is_non_hyperbolic(const All_edges_iterator& ei) const
{
return is_non_hyperbolic(*ei);
}
// is_infinite functions are kept in order to reuse Triangulation_2 demo :
// apply_to_range is called by Qt/TriangulationGraphicsItem.h
// TODO: document that is_infinite functions are not inherited from Triangulation_2
bool is_infinite(Face_handle f) const { return is_non_hyperbolic(f); }
bool is_infinite(Face_handle f, int i) const { return is_non_hyperbolic(f,i); }
bool is_infinite(const Edge e) const { return is_non_hyperbolic(e); }
bool is_infinite(const Edge_circulator& ec) const { return is_non_hyperbolic(ec); }
bool is_infinite(const All_edges_iterator& ei) const { return is_non_hyperbolic(ei); }
private:
bool has_infinite_vertex(Face_handle f) const
{
return Base::is_infinite(f);
}
bool has_infinite_vertex(Face_handle f, int i) const
{
return Base::is_infinite(f, i);
}
bool has_infinite_vertex(const Edge& e) const
{
return Base::is_infinite(e);
}
int get_finite_non_hyperbolic_edge(Face_handle f) const
{
assert(is_finite_non_hyperbolic(f));
return f->info().get_non_hyperbolic_edge();
}
bool is_finite_non_hyperbolic(Face_handle f) const
{
return f->info().is_finite_non_hyperbolic();
}
bool is_finite_non_hyperbolic(Face_handle f, int i) const
{
if(this->dimension() <= 1) {
return false;
}
if(is_finite_non_hyperbolic(f) && get_finite_non_hyperbolic_edge(f) == i) {
return true;
}
// another incident face and corresponding index
Face_handle f2 = f->neighbor(i);
int i2 = f2->index(f);
if(is_finite_non_hyperbolic(f2) && get_finite_non_hyperbolic_edge(f2) == i2) {
return true;
}
return false;
}
bool is_finite_non_hyperbolic(const Edge& e) const
{
return is_finite_non_hyperbolic(e.first, e.second);
}
// Depth-first search (dfs) and marking the finite non_hyperbolic faces.
void mark_finite_non_hyperbolic_faces() const
{
if(this->dimension() <= 1) return;
std::set<Face_handle> visited_faces;
// maintain a stack to be able to backtrack
// to the most recent faces which neighbors are not visited
std::stack<Face_handle> backtrack;
// start from a face with infinite vertex
Face_handle current = Base::infinite_face();
// mark it as visited
visited_faces.insert(current);
// put the element whose neighbors we are going to explore.
backtrack.push(current);
// test whether a face is finite non_hyperbolic or not
Mark_face test(*this);
Face_handle next;
Face_info face_info;
while(!backtrack.empty()) {
// take a face
current = backtrack.top();
// start visiting the neighbors
int i = 0;
for(; i < 3; i++) {
next = current->neighbor(i);
// if a neighbor is already visited, then stop going deeper
if(visited_faces.find(next) != visited_faces.end()) {
continue;
}
visited_faces.insert(next);
mark_face(next, test);
// go deeper if the neighbor is non_hyperbolic
if(is_non_hyperbolic(next)) {
backtrack.push(next);
break;
}
}
// if all the neighbors are already visited, then remove "current" face.
if(i == 3) {
backtrack.pop();
}
}
}
// check if a star is bounded by finite faces
// TODO: rename this function name
bool is_star_bounded(Vertex_handle v) const
{
if(this->dimension() <= 1) {
return true;
}
Face_handle f = v->face();
Face_handle next;
int i;
Face_handle start(f);
Face_handle opposite_face;
do {
i = f->index(v);
next = f->neighbor(ccw(i)); // turn ccw around v
opposite_face = f->neighbor(i);
if(this->is_non_hyperbolic(opposite_face)) {
return false;
}
f = next;
} while(next != start);
return true;
}
//use the function: insert_and_give_new_faces?
void mark_star_faces(Vertex_handle v) const
{
// TODO: think of it
if(this->dimension() <= 1) return;
Mark_face test(*this);
Face_handle f = v->face();
Face_handle start(f), next;
int i;
do {
i = f->index(v);
next = f->neighbor(ccw(i)); // turn ccw around v
mark_face(f, test);
f = next;
} while(next != start);
return;
}
template<class Mark_face_test>
void mark_face(const Face_handle& f, const Mark_face_test& test) const
{
f->info() = test(f);
}
void mark_face(const Face_handle& f) const
{
Mark_face test(*this);
mark_face(f, test);
}
class Mark_face
{
public:
Mark_face(const Self& tr) :
_tr(tr)
{}
Face_info operator ()(const Face_handle& f) const
{
typedef typename Gt::Is_hyperbolic Is_hyperbolic;
Face_info info;
if(_tr.has_infinite_vertex(f)) {
return info; // info is set to false by default constructor
}
Point p0 = f->vertex(0)->point();
Point p1 = f->vertex(1)->point();
Point p2 = f->vertex(2)->point();
int ind = 0;
Is_hyperbolic is_hyperbolic = _tr.geom_traits().Is_hyperbolic_object();
if(is_hyperbolic(p0, p1, p2, ind) == false) {
info.set_finite_non_hyperbolic(true);
info.set_non_hyperbolic_edge(ind);
return info;
}
// the face is finite and hyperbolic
return info;
}
private:
Mark_face(const Mark_face&);
Mark_face& operator= (const Mark_face&);
const Self& _tr;
};
public:
// This class is used to generate the Finite_*_iterators.
class Non_hyperbolic_tester
{
const Self *t;
public:
Non_hyperbolic_tester() {}
Non_hyperbolic_tester(const Self *tr) : t(tr) {}
bool operator()(const All_vertices_iterator & vit) const {
return t->is_infinite(vit);
}
bool operator()(const All_faces_iterator & fit) const {
return t->is_non_hyperbolic(fit);
}
bool operator()(const All_edges_iterator & eit ) const {
return t->is_non_hyperbolic(eit);
}
};
Non_hyperbolic_tester
non_hyperbolic_tester() const
{
return Non_hyperbolic_tester(this);
}
class Hyperbolic_faces_iterator
: public Filter_iterator<All_faces_iterator, Non_hyperbolic_tester>
{
typedef Filter_iterator<All_faces_iterator, Non_hyperbolic_tester> Base;
typedef Hyperbolic_faces_iterator Self;
public:
Hyperbolic_faces_iterator() : Base() {}
Hyperbolic_faces_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator const Face_handle() const { return Base::base(); }
};
Hyperbolic_faces_iterator
hyperbolic_faces_begin() const
{
if ( this->dimension() < 2 )
return hyperbolic_faces_end();
return CGAL::filter_iterator(this->all_faces_end(),
Non_hyperbolic_tester(this),
this->all_faces_begin() );
}
Hyperbolic_faces_iterator
hyperbolic_faces_end() const
{
return CGAL::filter_iterator(this->all_faces_end(),
Non_hyperbolic_tester(this) );
}
typedef Filter_iterator<All_edges_iterator, Non_hyperbolic_tester> Hyperbolic_edges_iterator;
Hyperbolic_edges_iterator
hyperbolic_edges_begin() const
{
if ( this->dimension() < 1 )
return hyperbolic_edges_end();
return CGAL::filter_iterator(this->all_edges_end(),
Non_hyperbolic_tester(this),
this->all_edges_begin());
}
Hyperbolic_edges_iterator
hyperbolic_edges_end() const
{
return CGAL::filter_iterator(this->all_edges_end(),
Non_hyperbolic_tester(this) );
}
size_type number_of_hyperbolic_faces() const
{
return std::distance(hyperbolic_faces_begin(), hyperbolic_faces_end());
}
size_type number_of_hyperbolic_edges() const
{
return std::distance(hyperbolic_edges_begin(), hyperbolic_edges_end());
}
// Finite faces/edges iterators kept for the demo in order to reuse Triangulation_2 demo (see above)
// TODO: document that they are not inherited from Triangulation_2
typedef Hyperbolic_faces_iterator Finite_faces_iterator;
Finite_faces_iterator finite_faces_begin() const { return hyperbolic_faces_begin(); }
Finite_faces_iterator finite_faces_end() const { return hyperbolic_faces_end(); }
typedef Hyperbolic_edges_iterator Finite_edges_iterator;
Finite_edges_iterator finite_edges_begin() const { return hyperbolic_edges_begin(); }
Finite_edges_iterator finite_edges_end() const { return hyperbolic_edges_end(); }
using Base::dual;
Object
dual(const Finite_edges_iterator& ei) const
{
return this->dual(*ei);
}
Object
dual(const Edge &e) const
{
CGAL_triangulation_precondition (!this->is_non_hyperbolic(e));
if(this->dimension() == 1) {
const Point& p = (e.first)->vertex(cw(e.second))->point();
const Point& q = (e.first)->vertex(ccw(e.second))->point();
// hyperbolic line
Segment line = this->geom_traits().construct_hyperbolic_bisector_2_object()(p,q);
return make_object(line);
}
// incident faces
Face_handle f1 = e.first;
int i1 = e.second;
Face_handle f2 = f1->neighbor(i1);
int i2 = f2->index(f1);
// boths faces are non_hyperbolic, but the incident edge is hyperbolic
if(is_non_hyperbolic(f1) && is_non_hyperbolic(f2)){
const Point& p = (f1)->vertex(cw(i1))->point();
const Point& q = (f1)->vertex(ccw(i1))->point();
// hyperbolic line
Segment line = this->geom_traits().construct_hyperbolic_bisector_2_object()(p,q);
return make_object(line);
}
// both faces are finite
if(!is_non_hyperbolic(f1) && !is_non_hyperbolic(f2)) {
Segment s = this->geom_traits().construct_segment_2_object()
(dual(f1),dual(f2));
return make_object(s);
}
// one of the incident faces is non_hyperbolic
Face_handle finite_face = f1;
int i = i1;
if(is_non_hyperbolic(f1)) {
finite_face = f2;
i = i2;
}
const Point& p = finite_face->vertex(cw(i))->point();
const Point& q = finite_face->vertex(ccw(i))->point();
// ToDo: Line or Segment?
// hyperbolic line and ray
Segment line = this->geom_traits().construct_hyperbolic_bisector_2_object()(p,q);
Segment ray = this->geom_traits().construct_ray_2_object()(dual(finite_face), line);
return make_object(ray);
}
};
} //namespace CGAL
#endif // CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_2_H