cgal/Tutorial/tutorial/Polyhedron/Qt/Subdivision/tool/sqrt3.h

226 lines
8.4 KiB
C++

/***************************************************************************
sqrt3.cpp - Sqrt3 subdivision (Leif Kobbelt)
c++ wrapper for Lutz Kettner CGAL code
----------------------------------------------------------------------------
begin : march 2003
copyright : (C) 2003 by GEOMETRICA / INRIA
email : pierre.alliez@sophia.inria.fr
/**************************************************************************/
#ifndef SQRT3_H
#define SQRT3_H
#include "Enriched_polyhedron.h"
template <class Polyhedron,class kernel>
class CSubdivider_sqrt3
{
typedef typename kernel::Point_3 Point;
typedef typename kernel::Vector_3 Vector;
typedef typename Polyhedron::Vertex Vertex;
typedef typename Polyhedron::Vertex_iterator Vertex_iterator;
typedef typename Polyhedron::Halfedge_handle Halfedge_handle;
typedef typename Polyhedron::Edge_iterator Edge_iterator;
typedef typename Polyhedron::Facet_iterator Facet_iterator;
typedef typename Polyhedron::Halfedge_around_vertex_const_circulator HV_circulator;
typedef typename Polyhedron::Halfedge_around_facet_circulator HF_circulator;
#define PI 3.1415926535897932
public:
CSubdivider_sqrt3() {}
~CSubdivider_sqrt3() {}
public:
// Subdivision
int subdivide(Polyhedron &P,
int iter)
{
// check for valid polygon mesh
if(P.size_of_facets() == 0)
return false;
// normalize border
P.normalize_border();
for(int i=0;i<iter;i++)
{
// subdivision
subdivide(P);
// boundary subdivision
if(i & 1)
subdivide_border(P);
}
return true;
}
// Flip edge
void flip_edge(Polyhedron& P,
Halfedge_handle e)
{
if(e->is_border_edge())
return;
Halfedge_handle h = e->next();
P.join_facet( e);
P.split_facet( h, h->next()->next());
}
// Subdivide
void subdivide(Polyhedron& P)
{
// We use that new vertices/halfedges/facets are appended at the end.
std::size_t nv = P.size_of_vertices();
Vertex_iterator last_v = P.vertices_end();
-- last_v; // the last of the old vertices
Edge_iterator last_e = P.edges_end();
-- last_e; // the last of the old edges
Facet_iterator last_f = P.facets_end();
-- last_f; // the last of the old facets
Facet_iterator f = P.facets_begin(); // create new center vertices
do {
create_center_vertex( P, f);
} while ( f++ != last_f);
std::vector<Point> pts; // smooth the old vertices
pts.reserve( nv); // get intermediate space for the new points
++ last_v; // make it the past-the-end position again
std::transform( P.vertices_begin(), last_v, std::back_inserter( pts),
Smooth_old_vertex());
std::copy( pts.begin(), pts.end(), P.points_begin());
Edge_iterator e = P.edges_begin(); // flip the old edges
++ last_e; // make it the past-the-end position again
while ( e != last_e) {
Halfedge_handle h = e;
++e; // careful, incr. before flip since flip destroys current edge
flip_edge( P, h);
};
CGAL_postcondition( P.is_valid());
}
// Trisect border halfedge
void trisect_border_halfedge(Polyhedron& P,
Halfedge_handle e)
{
CGAL_precondition( e->is_border());
// Create two new vertices on e.
e = e->prev();
P.split_vertex( e, e->next()->opposite());
P.split_vertex( e, e->next()->opposite());
e = e->next();
// We use later for the smoothing step that e->next()->next()
// is our original halfedge we started with, i.e., its vertex is
// from the unrefined mesh. Split the face twice.
Halfedge_handle h = e->opposite()->next();
P.split_facet( e->next()->next()->opposite(), h);
P.split_facet( e->next()->opposite(), h);
}
// Subdivide border
void subdivide_border(Polyhedron& P)
{
if ( P.size_of_facets() == 0)
return;
// We use that new halfedges are appended at the end.
Edge_iterator last_e = P.edges_end();
-- last_e; // the last of the old edges
Edge_iterator e = P.edges_begin(); // create trisected border edges
do {
if ( e->opposite()->is_border())
trisect_border_halfedge( P, e->opposite());
else if ( e->is_border())
trisect_border_halfedge( P, e);
} while ( e++ != last_e);
e = P.edges_begin(); // smooth points on border edges
std::vector<Point> pts; // store new smoothed points temporarily
do {
if ( e->opposite()->is_border())
smooth_border_vertices( e->opposite(), std::back_inserter(pts));
else if ( e->is_border())
smooth_border_vertices( e, std::back_inserter(pts));
} while ( e++ != last_e);
e = P.edges_begin(); // copy smoothed points back
std::vector<Point>::iterator i = pts.begin();
do {
if ( e->opposite()->is_border()) {
e->vertex()->point() = *i++;
e->opposite()->vertex()->point() = *i++;
e->opposite()->next()->vertex()->point() = *i++;
} else if ( e->is_border()) {
e->opposite()->vertex()->point() = *i++;
e->vertex()->point() = *i++;
e->next()->vertex()->point() = *i++;
}
} while ( e++ != last_e);
CGAL_assertion( i == pts.end());
CGAL_postcondition( P.is_valid());
}
// Create center vertex
void create_center_vertex(Polyhedron& P,
Facet_iterator f)
{
Vector vec( 0.0, 0.0, 0.0);
std::size_t order = 0;
HF_circulator h = f->facet_begin();
do {
vec = vec + ( h->vertex()->point() - CGAL::ORIGIN);
++ order;
} while ( ++h != f->facet_begin());
CGAL_assertion( order >= 3); // guaranteed by definition of Polyhedron
Point center = CGAL::ORIGIN + (vec / (kernel::FT)order);
Halfedge_handle new_center = P.create_center_vertex( f->halfedge());
new_center->vertex()->point() = center;
}
struct Smooth_old_vertex
{
Point operator()( const Vertex& v) const
{
std::size_t degree = CGAL::circulator_size( v.vertex_begin());
if ( degree & 1) // odd degree only at border vertices
return v.point();
degree = degree / 2;
kernel::FT alpha = (4.0f - 2.0f * (kernel::FT)cos( 2.0f * PI / (kernel::FT)degree)) / 9.0f;
Vector vec = (v.point() - CGAL::ORIGIN) * ( 1.0f - alpha);
HV_circulator h = v.vertex_begin();
do {
// Even degree and border edges indicated non-manifold
// vertex with two holes.
if( h->is_border())
{
std::cerr << "Error: non-manifold vertex. Erroneous smoothing."
<< std::endl;
return v.point();
}
vec = vec + ( h->opposite()->vertex()->point() - CGAL::ORIGIN)
* alpha / (kernel::FT)degree;
++ h;
CGAL_assertion( h != v.vertex_begin()); // even degree guaranteed
++ h;
} while ( h != v.vertex_begin());
return (CGAL::ORIGIN + vec);
}
};
template <class OutputIterator>
void smooth_border_vertices(typename Halfedge_handle e,
OutputIterator out)
{
CGAL_precondition( e->is_border());
// We know that the vertex at this edge is from the unrefined mesh.
// Get the locus vectors of the unrefined vertices in the neighborhood.
Vector v0 = e->prev()->prev()->opposite()->vertex()->point() -CGAL::ORIGIN;
Vector v1 = e->vertex()->point() - CGAL::ORIGIN;
Vector v2 = e->next()->next()->next()->vertex()->point() - CGAL::ORIGIN;
*out++ = CGAL::ORIGIN + (10.0 * v0 + 16.0 * v1 + v2) / 27.0;
*out++ = CGAL::ORIGIN + ( 4.0 * v0 + 19.0 * v1 + 4.0 * v2) / 27.0;
*out++ = CGAL::ORIGIN + ( v0 + 16.0 * v1 + 10.0 * v2) / 27.0;
}
};
#endif // SQRT3_H