cgal/Point_set_shape_detection_3/include/CGAL/Plane_regularization.h

761 lines
27 KiB
C++

// Copyright (c) 2015 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) :
//
/**
* \ingroup PkgPointSetShapeDetection3
* \file CGAL/Plane_regularization.h
*
*/
#ifndef CGAL_PLANE_REGULARIZATION_H
#define CGAL_PLANE_REGULARIZATION_H
#include <CGAL/Shape_detection_3.h>
#include <CGAL/centroid.h>
#include <boost/foreach.hpp>
namespace CGAL {
template <typename Traits>
class Plane_regularization
{
public:
typedef Plane_regularization<Traits> Self;
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Vector;
typedef typename Traits::Plane_3 Plane;
typedef typename Traits::Point_map Point_map;
typedef typename Traits::Normal_map Normal_map;
typedef typename Traits::Input_range Input_range;
typedef typename Input_range::iterator Input_iterator;
typedef Shape_detection_3::Shape_base<Traits> Shape;
typedef Shape_detection_3::Plane<Traits> Plane_shape;
private:
struct Plane_cluster
{
bool is_free;
std::vector<std::size_t> planes;
std::vector<std::size_t> orthogonal_clusters;
Vector normal;
FT cosangle_vertical;
FT area;
FT cosangle_centroid;
};
Traits m_traits;
Input_iterator m_input_begin;
Input_iterator m_input_end;
Point_map m_point_pmap;
Normal_map m_normal_pmap;
std::vector<boost::shared_ptr<Plane_shape> > m_planes;
std::vector<Point> m_centroids;
std::vector<FT> m_areas;
public:
Plane_regularization (Traits t = Traits ())
: m_traits (t)
{
}
Plane_regularization (Input_range& input_range,
const Shape_detection_3::Efficient_RANSAC<Traits>& shape_detection)
: m_traits (shape_detection.traits())
{
m_input_begin = input_range.begin ();
m_input_end = input_range.end ();
BOOST_FOREACH (boost::shared_ptr<Shape> shape, shape_detection.shapes())
{
boost::shared_ptr<Plane_shape> pshape
= boost::dynamic_pointer_cast<Plane_shape>(shape);
// Ignore all shapes other than plane
if (pshape == boost::shared_ptr<Plane_shape>())
continue;
m_planes.push_back (pshape);
}
}
virtual ~Plane_regularization ()
{
clear ();
}
void clear ()
{
std::vector<boost::shared_ptr<Plane_shape> > ().swap (m_planes);
std::vector<Point> ().swap (m_centroids);
std::vector<FT> ().swap (m_areas);
}
std::size_t run (FT epsilon, FT tolerance_coplanarity)
{
compute_centroids_and_areas ();
// clustering the parallel primitives and store them in clusters
// & compute the normal, size and cos angle to the vertical of each cluster
std::vector<Plane_cluster> clusters;
compute_parallel_clusters (clusters, epsilon);
//discovery orthogonal relationship between clusters
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
for (std::size_t j = i + 1; j < clusters.size(); ++ j)
{
if (std::fabs (clusters[i].normal * clusters[j].normal) < epsilon)
{
clusters[i].orthogonal_clusters.push_back (j);
clusters[j].orthogonal_clusters.push_back (i);
}
}
}
//clustering the vertical cosangle and store their centroids in
//cosangle_centroids and the centroid index of each cluster in
//list_cluster_index
cluster_vertical_cosangles (clusters, epsilon);
//find subgraphs of mutually orthogonal clusters (store index of
//clusters in subgraph_clusters), and select the cluster of
//largest area
subgraph_mutually_orthogonal_clusters (clusters);
//recompute optimal plane for each primitive after normal regularization
for (std::size_t i=0; i < clusters.size(); ++ i)
{
Vector vec_reg = clusters[i].normal;
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
{
int index_prim = clusters[i].planes[j];
Point pt_reg = m_planes[index_prim]->projection (m_centroids[index_prim]);
if( m_planes[index_prim]->plane_normal () * vec_reg < 0)
vec_reg=-vec_reg;
Plane plane_reg(pt_reg,vec_reg);
if( std::fabs(m_planes[index_prim]->plane_normal () * plane_reg.orthogonal_vector ()) > 1. - epsilon)
m_planes[index_prim]->update (plane_reg);
}
}
//detecting co-planarity and store in list_coplanar_prim
std::vector<std::vector< std::vector < int > > > list_coplanar_prim;
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
std::vector< std::vector < int > > list_coplanar_prim_tmp;
Vector vec_reg = clusters[i].normal;
std::vector < int > list_cop_index;
for (std::size_t ip = 0; ip < clusters[i].planes.size(); ++ ip)
list_cop_index.push_back(-1);
int cop_index=0;
for (std::size_t j = 0; j < clusters[i].planes.size(); ++ j)
{
int index_prim = clusters[i].planes[j];
if (list_cop_index[j] < 0)
{
std::vector < int > list_coplanar_prim_tmp_tmp;
list_cop_index[j]=cop_index;
list_coplanar_prim_tmp_tmp.push_back(index_prim);
Point pt_reg = m_planes[index_prim]->projection(m_centroids[index_prim]);
Plane plan_reg(pt_reg,vec_reg);
for (std::size_t k = j+1; k < clusters[i].planes.size(); ++ k)
{
if (list_cop_index[k] < 0)
{
int index_prim_next = clusters[i].planes[k];
Point pt_reg_next = m_planes[index_prim_next]->projection(m_centroids[index_prim_next]);
Point pt_proj=plan_reg.projection(pt_reg_next);
double distance=distance_Point(pt_reg_next,pt_proj);
if(distance<tolerance_coplanarity )
{
list_cop_index[k]=cop_index;
list_coplanar_prim_tmp_tmp.push_back(index_prim_next);
}
}
}
list_coplanar_prim_tmp.push_back(list_coplanar_prim_tmp_tmp);
cop_index++;
}
}
list_coplanar_prim.push_back(list_coplanar_prim_tmp);
}
//regularize primitive position by computing barycenter of cplanar planes
std::vector < std::vector < int > > list_primitive_reg_index_extracted_planes;
std::vector < Plane > list_primitive_reg;
for (std::size_t i=0;i<list_coplanar_prim.size();i++)
{
for (std::size_t j=0;j<list_coplanar_prim[i].size();j++)
{
Point pt_bary(0.,0.,0.);
double area=0;
for (std::size_t k=0; k<list_coplanar_prim[i][j].size();k++)
{
int index_prim=list_coplanar_prim[i][j][k];
Point pt_reg = m_planes[index_prim]->projection(m_centroids[index_prim]);
pt_bary=barycenter(pt_bary, area,pt_reg,m_areas[index_prim]);
area+=m_areas[index_prim];
}
Vector vec_reg = m_planes[list_coplanar_prim[i][j][0]]->plane_normal ();
Plane plane_reg(pt_bary,vec_reg);
bool is_reg_used=false;
std::vector< int > list_primitive_reg_index_extracted_planes_tmp1;
for (std::size_t k=0; k<list_coplanar_prim[i][j].size();k++)
{
int index_prim=list_coplanar_prim[i][j][k];
if( std::fabs(m_planes[index_prim]->plane_normal () * plane_reg.orthogonal_vector()) > 1. - epsilon)
{
if(m_planes[index_prim]->plane_normal () * plane_reg.orthogonal_vector()<0)
m_planes[index_prim]->update (plane_reg.opposite());
else
m_planes[index_prim]->update (plane_reg);
is_reg_used=true;
list_primitive_reg_index_extracted_planes_tmp1.push_back(index_prim);
}
else{
list_primitive_reg.push_back(static_cast<Plane> (*(m_planes[index_prim])));
std::vector< int > list_primitive_reg_index_extracted_planes_tmp;
list_primitive_reg_index_extracted_planes_tmp.push_back(index_prim);
list_primitive_reg_index_extracted_planes.push_back(list_primitive_reg_index_extracted_planes_tmp);
}
}
if(is_reg_used) {
list_primitive_reg.push_back(plane_reg);
list_primitive_reg_index_extracted_planes.push_back(list_primitive_reg_index_extracted_planes_tmp1);
}
}
}
// std::cout<<std::endl<<std::endl<<"NB planes final = "<<list_primitive_reg.size()<<std::endl<<std::endl;
std::cerr << m_planes.size () << " planes" << std::endl;
std::cerr << clusters.size () << " clusters" << std::endl;
std::cerr << list_coplanar_prim.size () << " list coplanar prim" << std::endl;
for (std::size_t i = 0; i < list_coplanar_prim.size (); ++ i)
std::cerr << list_coplanar_prim[i].size () << " ";
std::cerr << std::endl;
std::cerr << list_primitive_reg_index_extracted_planes.size () << " list primitive reg index extracted planes" << std::endl;
for (std::size_t i = 0; i < list_primitive_reg_index_extracted_planes.size (); ++ i)
std::cerr << list_primitive_reg_index_extracted_planes[i].size () << " ";
std::cerr << std::endl;
std::cerr << list_primitive_reg.size () << " list primitive reg" << std::endl;
//merge similar planes in plane_point_index and extracted planes and HPS[i].primitive_index
// std::vector < std::vector < int > > plane_point_index_temp;
// std::vector < Plane > extracted_planes_temp;
// std::vector < bool > has_been_merged;
// for (std::size_t i=0; i< m_planes.size();i++)
// has_been_merged.push_back(false);
// for (std::size_t i=0; i< m_planes.size();i++)
// {
// if (!has_been_merged[i])
// {
// extracted_planes_temp.push_back (m_planes[i]);
// int label_index=extracted_planes_temp.size()-1;
// plane_point_index_temp.push_back(m_planes[i]->indices_of_assigned_points[i]);
// for (std::size_t k=0; k< m_planes[i]->indices_of_assigned_points().size();k++)
// {
// int index_pt=m_planes[i]->indices_of_assigned_points[k];
// primitive_index[index_pt]=label_index;
// label_plane[index_pt]=label_index;
// }
// for (std::size_t j=i+1;j< m_planes.size();j++)
// {
// if(m_planes[i]==m_planes[j])
// { //if identical (do opposite plane too ?) then store the second in the first
// has_been_merged[j]=true;
// std::vector< int > plane_point_index_new
// = plane_point_index_temp[m_planes.size()-1];
// for (std::size_t k=0; k< m_planes[j]->indices_of_assigned_points().size();k++)
// {
// int ind=m_planes[j]->indices_of_assigned_points[k];
// plane_point_index_new.push_back(ind);
// primitive_index[ind]=label_index;
// label_plane[ind]=label_index;
// }
// plane_point_index_temp[plane_point_index_temp.size()-1]=plane_point_index_new;
// }
// }
// }
// }
// TODO
// m_planes=extracted_planes_temp;
// m_planes->indices_of_assigned_points=plane_point_index_temp;
return list_primitive_reg.size ();
}
void compute_centroids_and_areas ()
{
for (std::size_t i = 0; i < m_planes.size (); ++ i)
{
std::vector < Point > listp;
for (std::size_t j = 0; j < m_planes[i]->indices_of_assigned_points ().size (); ++ j)
{
int yy = m_planes[i]->indices_of_assigned_points()[j];
Point pt = get (m_point_pmap, *(m_input_begin + yy));
listp.push_back(pt);
}
m_centroids.push_back (CGAL::centroid (listp.begin (), listp.end ()));
m_areas.push_back ((double)(m_planes[i]->indices_of_assigned_points().size()) / 100.);
}
}
void compute_parallel_clusters (std::vector<Plane_cluster>& clusters, double epsilon)
{
// find pairs of epsilon-parallel primitives and store them in parallel_planes
std::vector<std::vector<std::size_t> > parallel_planes (m_planes.size ());
for (std::size_t i = 0; i < m_planes.size (); ++ i)
{
Vector v1 = m_planes[i]->plane_normal ();
for (std::size_t j = 0; j < m_planes.size(); ++ j)
{
if (i == j)
continue;
Vector v2 = m_planes[i]->plane_normal ();
if (std::fabs (v1 * v2) > 1. - epsilon)
parallel_planes[i].push_back (j);
}
}
std::vector<bool> is_available (m_planes.size (), true);
for (std::size_t i = 0; i < m_planes.size(); ++ i)
{
if(is_available[i])
{
is_available[i] = false;
clusters.push_back (Plane_cluster());
Plane_cluster& clu = clusters.back ();
//initialization containers
clu.planes.push_back (i);
std::vector<std::size_t> index_container_former_ring_parallel;
index_container_former_ring_parallel.push_back(i);
std::list<std::size_t> index_container_current_ring_parallel;
//propagation over the pairs of epsilon-parallel primitives
bool propagation=true;
clu.normal = m_planes[i]->plane_normal ();
clu.area = m_areas[i];
do
{
propagation = false;
for (std::size_t k = 0; k < index_container_former_ring_parallel.size(); ++ k)
{
std::size_t plane_index = index_container_former_ring_parallel[k];
for (std::size_t l = 0; l < parallel_planes[plane_index].size(); ++ l)
{
std::size_t it = parallel_planes[plane_index][l];
Vector normal_it = m_planes[it]->plane_normal ();
if(is_available[it]
&& std::fabs (normal_it*clu.normal) > 1. - epsilon )
{
propagation = true;
index_container_current_ring_parallel.push_back(it);
is_available[it]=false;
if(clu.normal * normal_it <0)
normal_it = -normal_it;
clu.normal = (FT)clu.area * clu.normal
+ (FT)m_areas[it] * normal_it;
FT norm = 1. / std::sqrt (clu.normal.squared_length());
clu.normal = norm * clu.normal;
clu.area += m_areas[it];
}
}
}
//update containers
index_container_former_ring_parallel.clear();
for (std::list<std::size_t>::iterator it = index_container_current_ring_parallel.begin();
it != index_container_current_ring_parallel.end(); ++it)
{
index_container_former_ring_parallel.push_back(*it);
clu.planes.push_back(*it);
}
index_container_current_ring_parallel.clear();
}
while(propagation);
Vector v_vertical(0.,0.,1.);
clu.cosangle_vertical = std::fabs(v_vertical*clu.normal);
}
}
is_available.clear();
}
void cluster_vertical_cosangles (std::vector<Plane_cluster>& clusters, double epsilon)
{
std::vector < double > cosangle_centroids;
std::vector < int > list_cluster_index;
for( std::size_t i = 0; i < clusters.size(); ++ i)
list_cluster_index.push_back(-1);
int mean_index = 0;
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
if(list_cluster_index[i]<0)
{
list_cluster_index[i] = mean_index;
double mean = clusters[i].area * clusters[i].cosangle_vertical;
double mean_area = clusters[i].area;
for (std::size_t j = i+1; j < clusters.size(); ++ j)
{
if (list_cluster_index[j] < 0 && std::fabs (clusters[j].cosangle_vertical -
mean / mean_area) < epsilon)
{
list_cluster_index[j] = mean_index;
mean_area += clusters[j].area;
mean += clusters[j].area * clusters[j].cosangle_vertical;
}
}
++ mean_index;
mean /= mean_area;
cosangle_centroids.push_back (mean);
}
}
for (std::size_t i = 0; i < cosangle_centroids.size (); ++ i)
std::cerr << cosangle_centroids[i] << ", ";
std::cerr <<std::endl;
for (std::size_t i = 0; i < list_cluster_index.size (); ++ i)
std::cerr << list_cluster_index[i] << " ";
std::cerr <<std::endl;
//desactive Z-verticalité
for (std::size_t i = 0; i < cosangle_centroids.size(); ++ i)
{
if (cosangle_centroids[i] < epsilon)
cosangle_centroids[i] = 0;
else if (cosangle_centroids[i] > 1. - epsilon)
cosangle_centroids[i] = 1;
}
for (std::size_t i = 0; i < clusters.size(); ++ i)
clusters[i].cosangle_vertical = cosangle_centroids[list_cluster_index[i]];
}
void subgraph_mutually_orthogonal_clusters (std::vector<Plane_cluster>& clusters)
{
std::vector < std::vector < int > > subgraph_clusters;
std::vector < int > subgraph_clusters_max_area_index;
for (std::size_t i = 0; i < clusters.size(); ++ i)
clusters[i].is_free = true;
for (std::size_t i = 0; i < clusters.size(); ++ i)
{
if(clusters[i].is_free)
{
clusters[i].is_free = false;
double max_area = clusters[i].area;
int index_max_area = i;
//initialization containers
std::vector < int > index_container;
index_container.push_back(i);
std::vector < int > index_container_former_ring;
index_container_former_ring.push_back(i);
std::list < int > index_container_current_ring;
//propagation
bool propagation=true;
do
{
propagation=false;
//neighbors
for (std::size_t k=0;k<index_container_former_ring.size();k++)
{
int cluster_index=index_container_former_ring[k];
for (std::size_t j = 0; j < clusters[cluster_index].orthogonal_clusters.size(); ++ j)
{
if(clusters[j].is_free)
{
propagation = true;
index_container_current_ring.push_back(j);
clusters[j].is_free = false;
if(max_area < clusters[j].area)
{
max_area = clusters[j].area;
index_max_area = j;
}
}
}
}
//update containers
index_container_former_ring.clear();
for(std::list < int >::iterator it = index_container_current_ring.begin();
it != index_container_current_ring.end(); ++it)
{
index_container_former_ring.push_back(*it);
index_container.push_back(*it);
}
index_container_current_ring.clear();
}
while(propagation);
subgraph_clusters.push_back(index_container);
subgraph_clusters_max_area_index.push_back(index_max_area);
}
}
//create subgraphs of mutually orthogonal clusters in which the
//largest cluster is excluded and store in
//subgraph_clusters_prop
std::vector < std::vector < int > > subgraph_clusters_prop;
for (std::size_t i=0;i<subgraph_clusters.size(); i++)
{
int index=subgraph_clusters_max_area_index[i];
std::vector < int > subgraph_clusters_prop_temp;
for (std::size_t j=0;j<subgraph_clusters[i].size(); j++)
if(subgraph_clusters[i][j]!=index)
subgraph_clusters_prop_temp.push_back(subgraph_clusters[i][j]);
subgraph_clusters_prop.push_back(subgraph_clusters_prop_temp);
}
//regularization of cluster normals : in eachsubgraph, we start
//from the largest area cluster and we propage over the subgraph
//by regularizing the normals of the clusters accorting to
//orthogonality and cosangle to vertical
for (std::size_t i = 0; i < clusters.size(); ++ i)
clusters[i].is_free = true;
for (std::size_t i = 0; i < subgraph_clusters_prop.size(); ++ i)
{
int index_current=subgraph_clusters_max_area_index[i];
Vector vec_current=regularize_normal(clusters[index_current].normal,
clusters[index_current].cosangle_vertical);
clusters[index_current].normal = vec_current;
clusters[index_current].is_free = false;
//initialization containers
std::vector < int > index_container;
index_container.push_back(index_current);
std::vector < int > index_container_former_ring;
index_container_former_ring.push_back(index_current);
std::list < int > index_container_current_ring;
//propagation
bool propagation=true;
do
{
propagation=false;
//neighbors
for (std::size_t k=0;k<index_container_former_ring.size();k++)
{
int cluster_index=index_container_former_ring[k];
for (std::size_t j = 0; j < clusters[cluster_index].orthogonal_clusters.size(); ++ j)
{
if(clusters[j].is_free)
{
propagation = true;
index_container_current_ring.push_back(j);
clusters[j].is_free = false;
Vector new_vect=regularize_normals_from_prior(clusters[cluster_index].normal,
clusters[j].normal,
clusters[j].cosangle_vertical);
clusters[j].normal = new_vect;
}
}
}
//update containers
index_container_former_ring.clear();
for(std::list < int >::iterator it = index_container_current_ring.begin();
it != index_container_current_ring.end(); ++it)
{
index_container_former_ring.push_back(*it);
index_container.push_back(*it);
}
index_container_current_ring.clear();
}while(propagation);
}
std::cerr << subgraph_clusters.size () << " subgraph clusters" << std::endl;
for (std::size_t i = 0; i < subgraph_clusters.size (); ++ i)
std::cerr << subgraph_clusters[i].size () << " ";
std::cerr << std::endl;
std::cerr << subgraph_clusters_max_area_index.size () << " subgraph clusters max area index" << std::endl
<< subgraph_clusters_prop.size () << " subgraph clusters prop" << std::endl;
for (std::size_t i = 0; i < subgraph_clusters_prop.size (); ++ i)
std::cerr << subgraph_clusters_prop[i].size () << " ";
std::cerr << std::endl;
}
FT distance_Point (const Point& a, const Point& b)
{
return std::sqrt (CGAL::squared_distance (a, b));
}
Vector regularize_normal (const Vector& n, FT cos_vertical)
{
FT A = 1 - cos_vertical * cos_vertical;
FT B = 1 + (n.y() * n.y()) / (n.x() * n.x());
FT vx = std::sqrt (A/B);
if (n.x() < 0)
vx = -vx;
FT vy = vx * (n.y() / n.x());
Vector res (vx, vy, cos_vertical);
return res / std::sqrt (res * res);
}
Vector regularize_normals_from_prior (const Vector& np,
const Vector& n,
FT cos_vertical)
{
FT vx, vy;
if (np.x() != 0)
{
FT a = (np.y() * np.y()) / (np.x() * np.x()) + 1;
FT b = 2 * np.y() * np.z() * cos_vertical / np.x();
FT c= cos_vertical * cos_vertical-1;
if (4 * a * c > b * b)
return regularize_normal (n, cos_vertical);
else
{
FT delta = std::sqrt (b * b-4 * a * c);
FT vy1= (-b-delta) / (2 * a);
FT vy2= (-b+delta) / (2 * a);
vy = (std::fabs(n.y()-vy1) < std::fabs(n.y()-vy2))
? vy1 : vy2;
vx = (-np.y() * vy-np.z() * cos_vertical) / np.x();
}
}
else if (np.y() != 0)
{
vy = -np.z() * cos_vertical / np.y();
vx = std::sqrt (1 - cos_vertical * cos_vertical - vy * vy);
if (n.x() < 0)
vx = -vx;
}
else
return regularize_normal (n, cos_vertical);
Vector res (vx, vy, cos_vertical);
FT norm = std::max(1e-5, 1. / sqrt(res.squared_length ()));
return norm * res;
}
};
}; // namespace CGAL
#endif // CGAL_PLANE_REGULARIZATION_H