cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_DegreeVe...

42 lines
1.2 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::DegreeVector}
\ccDefinition
For a given \ccc{PolynomialTraits_d::Polynomial_d} $p$
this \ccc{AdaptableUnaryFunction} returns the degree vector, that is,
it returns the exponent vector of the monomial of highest order in $p$,
where the monomial order is the lexicographic order giving outer
variables a higher priority. In particular, this is the monomial
that belongs to the innermost leading coefficient of $p$.
\ccRefines
\ccc{AdaptableUnaryFunction}\\
\ccc{CopyConstructible}\\
\ccc{DefaultConstructible}\\
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef Exponent_vector result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(argument_type p);}
{Returns the degree vector.}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::Degree}\\
\ccRefIdfierPage{PolynomialTraits_d::TotalDegree}\\
\ccRefIdfierPage{PolynomialTraits_d::InnermostLeadingCoefficient}\\
\end{ccRefConcept}