cgal/Modular_arithmetic/doc_tex/Modular_arithmetic_ref/Modular.tex

74 lines
2.2 KiB
TeX

\begin{ccRefClass} {Modular}
\label{Modular}
\def\ccTagOperatorLayout{\ccFalse}
\ccDefinition
The class \ccRefName\ represents a finite field $\Z{/p\Z}$,
for some prime number $p$. \\
The prime number $p$ is stored in a static member variable.
The class provides static member functions to change this value.
{\bf Note that changing the prime invalidates already existing objects
of this type.}
However, already existing objects do not lose their value with respect to the
old prime and can be reused after restoring the old prime.
Since the type is base on double
arithmetic the prime is restricted to values less than $2^{26}$.
The initial value of $p$ is 67111067.
Note that due to the static prime the type is not thread-safe.
\ccInclude{CGAL/Modular.h}
\ccIsModel
\ccc{Field}\\
\ccCreation
\ccCreationVariable{x}
\ccConstructor{Modular();}
{introduces a variable \ccVar, which is initalized with zero;}
\ccGlue
\ccConstructor{Modular(const Modular& m);}
{copy constructor;}
\ccGlue
\ccConstructor{Modular(int i);}
{intorduces a variable \ccVar, which is initalized with $i \% p$;}
\ccGlue
\ccConstructor{Modular(long i);}
{intorduces a variable \ccVar, which is initalized with $i \% p$;}
\ccOperations
\ccMethod{static int set_current_prime(int p);}{
Static member function;\\
sets current prime to the given value and returns the old prime. }
\ccGlue
\ccMethod{static int get_current_prime();}{
Static member function;\\
returns the value of the current prime.
}
\ccGlue
\ccMethod{int get_value() const;}{
Returns the value of \ccVar.
}
\ccFunction{Modular operator+(const Modular&a);}{}\ccGlue
\ccFunction{Modular operator-(const Modular&a);}{}\ccGlue
\ccFunction{Modular operator+(const Modular&a,const Modular& b);}{}\ccGlue
\ccFunction{Modular operator-(const Modular&a,const Modular& b);}{}\ccGlue
\ccFunction{Modular operator*(const Modular&a,const Modular& b);}{}\ccGlue
\ccFunction{Modular operator/(const Modular&a,const Modular& b);}{}\ccGlue
\ccMethod{Modular & operator+=(const Modular& a);}{}\ccGlue
\ccMethod{Modular & operator-=(const Modular& a);}{}\ccGlue
\ccMethod{Modular & operator*=(const Modular& a);}{}\ccGlue
\ccMethod{Modular & operator/=(const Modular& a);}{}\ccGlue
\end{ccRefClass}