cgal/Nef_2/demo/Nef_2/homogeneous_data/mpii.nef

203 lines
5.6 KiB
Plaintext

Nef_polyhedron_2<Extended_homogeneous>
Plane_map_2
vertices 49
halfedges 130
faces 18
0 { 0 3, 0, 1 0 -1 1 0 -1 0 1 }
1 { 0 7, 0, 1 0 -55 0 -4675 0 55 }
2 { 0 11, 0, 1 0 -80 0 -6000 0 80 }
3 { 0 13, 0, 1 0 -1 1 0 1 0 1 }
4 { 0 17, 1, 0 -90 0 -65 0 1 }
5 { 0 19, 1, 0 -90 0 75 0 1 }
6 { 0 21, 1, 0 -70 0 -65 0 1 }
7 { 0 23, 1, 0 -70 0 55 0 1 }
8 { 0 25, 1, 0 -60 0 75 0 1 }
9 { 0 29, 0, 0 -35 0 -80 0 1 }
10 { 0 33, 0, 0 -35 0 -75 0 1 }
11 { 0 37, 1, 0 -140 0 -95 0 4 }
12 { 0 41, 1, 0 -70 0 25 0 2 }
13 { 0 43, 1, 0 -35 0 20 0 1 }
14 { 0 45, 0, 0 -30 0 -35 0 1 }
15 { 0 47, 0, 0 -30 0 0 0 1 }
16 { 0 51, 1, 0 -18 0 20 0 1 }
17 { 0 53, 0, 0 -15 0 -80 0 1 }
18 { 0 57, 0, 0 -15 0 -75 0 1 }
19 { 0 59, 1, 0 -15 0 -30 0 1 }
20 { 0 63, 1, 0 -15 0 -20 0 1 }
21 { 0 67, 1, 0 -15 0 -11 0 1 }
22 { 0 69, 0, 0 -15 0 10 0 1 }
23 { 0 73, 1, 0 -285 0 155 0 47 }
24 { 0 77, 1, 0 35 0 160 0 8 }
25 { 0 72, 1, 0 5 0 -5 0 1 }
26 { 0 79, 1, 0 15 0 75 0 1 }
27 { 0 83, 1, 0 20 0 -65 0 1 }
28 { 0 85, 1, 0 20 0 -30 0 1 }
29 { 0 87, 1, 0 20 0 20 0 1 }
30 { 0 74, 1, 0 20 0 45 0 1 }
31 { 0 91, 1, 0 25 0 -70 0 1 }
32 { 0 95, 1, 0 25 0 -65 0 1 }
33 { 0 97, 0, 0 25 0 45 0 1 }
34 { 0 99, 0, 0 40 0 -65 0 1 }
35 { 0 103, 1, 0 40 0 45 0 1 }
36 { 0 78, 1, 0 40 0 75 0 1 }
37 { 0 105, 1, 0 45 0 -70 0 1 }
38 { 0 102, 1, 0 45 0 45 0 1 }
39 { 0 109, 0, 0 65 0 -85 0 1 }
40 { 0 113, 1, 0 65 0 -75 0 1 }
41 { 0 115, 0, 0 65 0 30 0 1 }
42 { 0 119, 0, 0 85 0 -85 0 1 }
43 { 0 123, 1, 0 85 0 -75 0 1 }
44 { 0 114, 0, 0 85 0 30 0 1 }
45 { 0 125, 0, 1 0 1 1 0 -1 0 1 }
46 { 0 127, 0, 1 0 55 0 -4675 0 55 }
47 { 0 129, 0, 1 0 80 0 -6000 0 80 }
48 { 0 12, 0, 1 0 1 1 0 1 0 1 }
0 { 1, 3, 4, 1, 0, 0 }
1 { 0, 7, 2, 0, 1, 0 }
2 { 3, 1, 124, 45, 1, 0 }
3 { 2, 125, 0, 0, 0, 0 }
4 { 5, 0, 8, 2, 0, 0 }
5 { 4, 11, 6, 1, 2, 0 }
6 { 7, 5, 106, 39, 2, 1 }
7 { 6, 109, 1, 1, 1, 1 }
8 { 9, 4, 12, 3, 0, 0 }
9 { 8, 13, 10, 2, 3, 0 }
10 { 11, 9, 30, 10, 3, 0 }
11 { 10, 26, 5, 2, 2, 0 }
12 { 13, 8, 129, 48, 0, 0 }
13 { 12, 128, 9, 3, 3, 0 }
14 { 15, 17, 18, 5, 3, 1 }
15 { 14, 19, 16, 4, 4, 1 }
16 { 17, 15, 20, 6, 4, 1 }
17 { 16, 21, 14, 4, 3, 1 }
18 { 19, 14, 24, 8, 3, 1 }
19 { 18, 25, 15, 5, 4, 1 }
20 { 21, 16, 22, 7, 4, 1 }
21 { 20, 23, 17, 6, 3, 1 }
22 { 23, 20, 34, 11, 4, 1 }
23 { 22, 30, 21, 7, 3, 1 }
24 { 25, 18, 38, 12, 3, 1 }
25 { 24, 34, 19, 8, 4, 1 }
26 { 27, 29, 11, 10, 2, 0 }
27 { 26, 33, 28, 9, 5, 0 }
28 { 29, 27, 52, 17, 5, 0 }
29 { 28, 53, 26, 9, 2, 0 }
30 { 31, 10, 23, 11, 3, 1 }
31 { 30, 37, 32, 10, 6, 1 }
32 { 33, 31, 54, 18, 6, 1 }
33 { 32, 52, 27, 10, 5, 1 }
34 { 35, 22, 25, 12, 4, 0 }
35 { 34, 41, 36, 11, 7, 0 }
36 { 37, 35, 44, 14, 7, 0 }
37 { 36, 45, 31, 11, 6, 0 }
38 { 39, 24, 42, 13, 3, 1 }
39 { 38, 43, 40, 12, 8, 1 }
40 { 41, 39, 46, 15, 8, 0 }
41 { 40, 47, 35, 12, 7, 0 }
42 { 43, 38, 48, 16, 3, 1 }
43 { 42, 46, 39, 13, 8, 1 }
44 { 45, 36, 64, 21, 7, 0 }
45 { 44, 60, 37, 14, 6, 0 }
46 { 47, 40, 43, 16, 8, 0 }
47 { 46, 51, 41, 15, 7, 0 }
48 { 49, 42, 78, 26, 3, 1 }
49 { 48, 79, 50, 16, 9, 1 }
50 { 51, 49, 74, 24, 9, 0 }
51 { 50, 70, 47, 16, 7, 0 }
52 { 53, 28, 33, 18, 5, 0 }
53 { 52, 57, 29, 17, 2, 0 }
54 { 55, 32, 58, 19, 6, 1 }
55 { 54, 59, 56, 18, 3, 1 }
56 { 57, 55, 110, 40, 3, 0 }
57 { 56, 106, 53, 18, 2, 0 }
58 { 59, 54, 84, 28, 6, 1 }
59 { 58, 80, 55, 19, 3, 1 }
60 { 61, 63, 45, 21, 6, 1 }
61 { 60, 67, 62, 20, 10, 1 }
62 { 63, 61, 73, 25, 10, 1 }
63 { 62, 72, 60, 20, 6, 1 }
64 { 65, 44, 68, 22, 7, 0 }
65 { 64, 69, 66, 21, 11, 0 }
66 { 67, 65, 69, 23, 11, 1 }
67 { 66, 73, 61, 21, 10, 1 }
68 { 69, 64, 70, 23, 7, 0 }
69 { 68, 66, 65, 22, 11, 0 }
70 { 71, 68, 51, 24, 7, 0 }
71 { 70, 77, 72, 23, 6, 0 }
72 { 73, 71, 63, 25, 6, 1 }
73 { 72, 62, 67, 23, 10, 1 }
74 { 75, 50, 87, 30, 9, 1 }
75 { 74, 86, 76, 24, 12, 1 }
76 { 77, 75, 86, 29, 12, 1 }
77 { 76, 84, 71, 24, 6, 1 }
78 { 79, 48, 101, 36, 3, 1 }
79 { 78, 100, 49, 26, 9, 1 }
80 { 81, 83, 59, 28, 3, 1 }
81 { 80, 85, 82, 27, 9, 1 }
82 { 83, 81, 92, 32, 9, 1 }
83 { 82, 88, 80, 27, 3, 1 }
84 { 85, 58, 77, 29, 6, 1 }
85 { 84, 87, 81, 28, 9, 1 }
86 { 87, 76, 75, 30, 12, 1 }
87 { 86, 74, 85, 29, 9, 1 }
88 { 89, 91, 83, 32, 3, 1 }
89 { 88, 95, 90, 31, 13, 1 }
90 { 91, 89, 104, 37, 13, 1 }
91 { 90, 105, 88, 31, 3, 1 }
92 { 93, 82, 96, 33, 9, 0 }
93 { 92, 97, 94, 32, 14, 0 }
94 { 95, 93, 98, 34, 14, 0 }
95 { 94, 99, 89, 32, 13, 0 }
96 { 97, 92, 100, 35, 9, 0 }
97 { 96, 98, 93, 33, 14, 0 }
98 { 99, 94, 97, 35, 14, 0 }
99 { 98, 103, 95, 34, 13, 0 }
100 { 101, 96, 79, 36, 9, 1 }
101 { 100, 78, 102, 35, 3, 1 }
102 { 103, 101, 105, 38, 3, 1 }
103 { 102, 104, 99, 35, 13, 1 }
104 { 105, 90, 103, 38, 13, 1 }
105 { 104, 102, 91, 37, 3, 1 }
106 { 107, 6, 57, 40, 2, 1 }
107 { 106, 113, 108, 39, 15, 1 }
108 { 109, 107, 116, 42, 15, 0 }
109 { 108, 119, 7, 39, 1, 0 }
110 { 111, 56, 114, 41, 3, 0 }
111 { 110, 115, 112, 40, 16, 0 }
112 { 113, 111, 120, 43, 16, 1 }
113 { 112, 116, 107, 40, 15, 1 }
114 { 115, 110, 121, 44, 3, 0 }
115 { 114, 120, 111, 41, 16, 0 }
116 { 117, 108, 113, 43, 15, 1 }
117 { 116, 123, 118, 42, 17, 1 }
118 { 119, 117, 126, 46, 17, 1 }
119 { 118, 124, 109, 42, 1, 1 }
120 { 121, 112, 115, 44, 16, 0 }
121 { 120, 114, 122, 43, 3, 0 }
122 { 123, 121, 128, 47, 3, 0 }
123 { 122, 126, 117, 43, 17, 0 }
124 { 125, 2, 119, 46, 1, 0 }
125 { 124, 127, 3, 45, 0, 0 }
126 { 127, 118, 123, 47, 17, 0 }
127 { 126, 129, 125, 46, 0, 0 }
128 { 129, 122, 13, 48, 3, 0 }
129 { 128, 12, 127, 47, 0, 0 }
0 { -1, 3 , , 0 }
1 { 1, , , 1 }
2 { 5, , , 0 }
3 { 9, , , 1 }
4 { 15, , , 0 }
5 { 27, , , 1 }
6 { 31, , , 0 }
7 { 35, , , 1 }
8 { 39, , , 0 }
9 { 49, , , 0 }
10 { 61, , , 1 }
11 { 65, , , 0 }
12 { 75, , , 1 }
13 { 89, , , 0 }
14 { 93, , , 1 }
15 { 107, , , 1 }
16 { 111, , , 0 }
17 { 117, , , 0 }